268 research outputs found

    Creating a Transformational Learning Experience: Immersing Students in an Intensive Interdisciplinary Learning Environment

    Get PDF
    The Simmons World Challenge is a unique, interdisciplinary program recently developed at Simmons College. It immerses students in an intensive winter-session course that challenges them to tackle a pressing social issue, such as poverty or hunger, and create actionable solutions to the problem. The program was conceived and designed to harness the strengths of pedagogical theories on transformational teaching and learning. This article describes the Simmons World Challenge and presents assessment findings from the program’s third iteration in 2013, as well as on the long-term impact of the program based on follow-up assessments with the first two cohorts of students. These assessment findings demonstrate the deep and positive impact of the program on students’ engagement with learning, personal growth, academic habits and attitudes, student leadership and initiative, and sense of community at Simmons College

    TALENTED CARING NURSES ARE NEEDED IN A GLOBAL WORLD

    Get PDF
    Nursing professional practice has been strongly impacted by the increase of global affairs and the appeals for international exchanges arisen by globalization. Moreover, in the last decades, nursing scholars, graduate and undergraduate students from different continents and countries have been involved in joined research projects, knowledge exchange, and capacity building projects that concurrently contribute to the enrichment of knowledge transference, public good, and the achievement of the corporate university project. Besides to the aforementioned initiatives, one also observes an intense demand for nurses in developing countries divulged in the media1 that may stimulate Brazilian nurses’ migration, following a tendency that has been observed in North America and Europe in recent years

    cDNA that encodes active agrin

    Get PDF
    Agrin is thought to mediate the motor neuron-induced aggregation of AChRs and AChE on the surface of muscle fibers at neuromuscular junctions. We have isolated a cDNA from a chick brain library that, based on sequence homology and expression experiments, codes for active agrin. Examination of the sequence reveals considerable similarity to homologous cDNAs previously isolated from ray and rat libraries. A conspicuous difference is an insertion of 33 by in chick agrin cDNA, which endows the encoded protein with AChR/AChE aggregating activity. Homologous transcripts having the 33 by insertion were detected in the ray CNS, which indicates that an insertion of similar size is conserved in agrin in many, if not all, vertebrate species. Results of in situ hybridization studies and PCR experiments on mRNA isolated from motor neuron-enriched fractions of the spinal cord indicate that, consistent with the agrin hypothesis, motor neurons contain transcripts that code for active agrin

    Agrin Binds to the Nerve–Muscle Basal Lamina via Laminin

    Get PDF
    Agrin is a heparan sulfate proteoglycan that is required for the formation and maintenance of neuromuscular junctions. During development, agrin is secreted from motor neurons to trigger the local aggregation of acetylcholine receptors (AChRs) and other proteins in the muscle fiber, which together compose the postsynaptic apparatus. After release from the motor neuron, agrin binds to the developing muscle basal lamina and remains associated with the synaptic portion throughout adulthood. We have recently shown that full-length chick agrin binds to a basement membrane-like preparation called Matrigel™. The first 130 amino acids from the NH2 terminus are necessary for the binding, and they are the reason why, on cultured chick myotubes, AChR clusters induced by full-length agrin are small. In the current report we show that an NH2-terminal fragment of agrin containing these 130 amino acids is sufficient to bind to Matrigel™ and that the binding to this preparation is mediated by laminin-1. The fragment also binds to laminin-2 and -4, the predominant laminin isoforms of the muscle fiber basal lamina. On cultured myotubes, it colocalizes with laminin and is enriched in AChR aggregates. In addition, we show that the effect of full-length agrin on the size of AChR clusters is reversed in the presence of the NH2-terminal agrin fragment. These data strongly suggest that binding of agrin to laminin provides the basis of its localization to synaptic basal lamina and other basement membranes

    Cellular and Molecular Anatomy of the Human Neuromuscular Junction

    Get PDF
    The neuromuscular junction (NMJ) plays a fundamental role in transferring information from lower motor neuron to skeletal muscle to generate movement. It is also an experimentally accessible model synapse routinely studied in animal models to explore fundamental aspects of synaptic form and function. Here, we combined morphological techniques, super-resolution imaging, and proteomic profiling to reveal the detailed cellular and molecular architecture of the human NMJ. Human NMJs were significantly smaller, less complex, and more fragmented than mouse NMJs. In contrast to mice, human NMJs were also remarkably stable across the entire adult lifespan, showing no signs of age-related degeneration or remodeling. Super-resolution imaging and proteomic profiling revealed distinctive distribution of active zone proteins and differential expression of core synaptic proteins and molecular pathways at the human NMJ. Taken together, these findings reveal human-specific cellular and molecular features of the NMJ that distinguish them from comparable synapses in other mammalian species

    Engineered method for directional growth of muscle sheets on electrospun fibers

    Get PDF
    Research on the neuromuscular junction (NMJ) and its function and development spans over a century. However, researchers are limited in their ability to conduct experimentation on this highly specialized synapse between motor neurons and muscle fibers, as NMJs are not easily accessible outside the body. The aim of this work is to provide a reliable and reproducible muscle sheet model for in vitro NMJ study. A novel culture system was designed by engineering a method for the directional growth of myofiber sheets, using muscle progenitor cells cultured on electrospun fiber networks. Myoblastic C2C12 cells cultured on suspended aligned fibers were found to maintain directionality, with alignment angle standard deviations approximately two-thirds lower on fibers than on regular culture surfaces. Morphological studies found nuclei and cytoskeleton aspect ratios to be elongated by 20% and 150%, respectively. Furthermore, neurons were shown to form innervation patterns parallel to suspended fibers when co-cultured on developed muscle sheets, with alignment angle standard deviations three times lower compared to those on typical surfaces. The effect of agrin on samples was quantified through the slow release of agrin medium, encapsulated in alginate pellets and imbedded within culture chambers. Samples exposed to agrin showed significantly increased percentage of AChR-covered area. The developed model has potential to serve as the basis for synaptogenesis and NMJ studies, providing a novel approach to bio-artificial muscle alignment and setting the groundwork for further investigations in innervation. This article is protected by copyright. All rights reserved
    corecore