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ABSTRACT 
 

Technology-Based Personalization: Instructional Reform in Five Public Schools
 

David Nitkin 
 

This dissertation addresses the question: How does an attempt to redesign instructional 

delivery using technology-based personalization affect the technical core of teaching, learning, 

and student outcomes? In recent years, many prominent educators, business leaders, and 

philanthropists have suggested that schools be redesigned to personalize students’ learning 

experiences using technology. However, the justification for these reforms remains largely 

theoretical. Empirical research on technology-based personalization is sparse, and what little 

research does exist focuses predominantly on macro effects rather than the specific school-level, 

class-level, student-level, and lesson-level mechanisms that contribute to overall student 

achievement. The absence of research that pushes inside the “black box” of implementation is 

particularly problematic given a century of failed attempts to reform the technical core of 

instructional delivery, with symbolic reforms typically withering in the face of institutional 

resistance. 

This study attempts to address that gap by examining the implementation of an 

innovative model for using technology-based personalization to deliver middle school math 

instruction. I draw upon theoretical tools from institutional theory, instructional improvement, 

and the history of educational reform to deepen our understanding of how technology-based 

personalization affects the role of students and teachers, the logistics of content delivery, and 

students’ learning outcomes. Unlike previous studies in K-12 settings, which typically use 

summative assessments and virtual control groups to estimate aggregate effects on student 

learning, this study examines the relationships among a diverse set of lesson-level variables, 



 

 

including instructional method, instructional content, group size and composition, teacher 

characteristics, student characteristics, and learning outcomes. In doing so, this study contributes 

to our understanding of the on-the-ground processes and mechanisms by which technology-

based personalization affects (or does not affect) student learning. 

Although the instructional model documented in this case study will remain anonymous, 

it is well known and respected among educators and philanthropists, and regarded as one of the 

most prominent and archetypical examples of technology-based personalization currently active 

in American schools. Using multiple methods, including novel applications of hierarchical linear 

modeling, cluster analysis, and heatmap data visualization, I explore: (a) the degree to which 

ground-level implementation of technology-based personalization represents an authentic 

departure from the traditional technology of schooling, and (b) the relationships among various 

elements of the model and student learning outcomes. I draw on longitudinal data from a full 

year of implementation in five schools, including the daily lesson assignments and assessment 

scores of 1,238 unique students supervised by 48 teachers.  

 This study supports four main findings: (a) the program succeeds in altering the technical 

core of instruction in several fundamental ways; (b) policy and logistical constraints limit the 

program’s ability to reform the technical core of instruction to the degree that it aspires; (c) 

students who enter the program as already higher-performing are more successful on daily exit 

slips than students who enter the program with lower performance; and (d) the quantitative 

methods used in this paper represent useful and replicable tools for exploring the data produced 

by technology-based and personalized models. 
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1. Introduction 

Challenges Posed by Academic Diversity 

 Educators have consistently grappled with the challenge of meeting the varied academic 

needs of a diverse study body. The challenges posed by academic diversity are a consequence of 

three fundamental realities at the core of American public education: (1) the mandate that all 

students up to a certain age must attend school; (2) the desire for all students to obtain a uniform, 

baseline level of academic achievement; and (3) pre-existing economic, social, and cognitive 

disparities among the American public (Bidwell, 1965). In combination, these factors leave 

schools with the complex task of addressing the diverse academic and socio-emotional needs of 

all students, regardless of background, and ensuring that they meet the ever-increasing 

expectations of college, employers, and society at large. 

 Schools and districts have explored a variety of strategies for addressing this tension. 

Ability tracking and curricular differentiation have historically been two of the most common 

solutions, particularly in secondary schools (Lee & Ready, 2009). However, these strategies have 

increasingly been criticized for exacerbating divisions based on ability, race, class, ethnicity, and 

disability (Barr & Dreeben, 1983; Oakes, 1985). The rise of the standards and assessments policy 

regimes over the last thirty years has also reduced the popularity of curricular differentiation, 

which some have attacked as enabling lax standards that undermine achievement (Manna, 2011). 

However, the common alternative practice of organizing students into age-graded cohorts, 

irrespective of academic readiness, places the bulk of the “differentiation burden” upon 

classroom teachers. Specifically, variance in students’ academic ability is far greater within 

classrooms than between classrooms in the same school or district, with some estimating that as 
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much as 62% of the variance in fifth-grade mathematics ability is situated within classrooms 

(Barr & Dreeben, 1983; Corno, 2008; Martinez, Schecther, & Borko, 2009).  

 The most prevalent classroom-level strategy for accommodating student diversity is 

ability grouping. Particularly common at the primary level, this technique sees teachers grouping 

students for instructional delivery based on the results of formal or informal assessments of 

academic readiness and ability (Pallas et al., 1994). Some researchers have gone so far as to 

describe the academic group, rather than the classroom, as the primary structure through which 

teachers deliver instruction to students (Barr & Dreeben, 1983). Indeed, the ability to accurately 

assess student learning and adjust instruction in real-time is one of the central tasks of teaching. 

According to Corno (2008), this type of differentiation is not a formal strategy or program, but 

instead what talented and experienced teachers learn to do naturally based on their accumulated 

teaching experiences. Talented teachers develop heuristic shortcuts that they use to customize 

and craft instruction to meet the needs of their students in real-time. This aligns with Bidwell’s 

description of teachers as bridging the gap between the divergent skills of incoming students and 

the uniform academic outcomes expected by the bureaucratic schooling enterprise (Bidwell, 

1965; Corno, 2008). However, this level of differentiation is difficult for teachers to execute 

effectively, and requires potentially unsustainable levels of pre-work and preparation (Beteille & 

Loeb, 2009; Carnoy & Levin, 1985; National Mathematics Advisory Panel, 2008). 

 Taken to its extreme, this suggests that the most effective mechanism for addressing the 

unique academic needs of learners would be to assign an individual tutor to each student (Bloom, 

1984; VanLehn, 2011). These tutors could custom-tailor the instructional content to match each 

student’s preexisting skills and knowledge. Individualized tutors could also uniquely tailor the 

method of instruction based on each student’s preferences and proclivities, with teaching and 
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learning deliberately varied across text-based, oral, or visually oriented material to maximize 

each child’s unique learning trajectory (Gardner, 2011). However, assigning an individual tutor 

to each student would obviously be cost-prohibitive using existing technologies. Moreover, this 

approach would neglect the fundamentally social nature of classroom life and could inhibit the 

development of students’ interpersonal, collaboration, and communication skills. 

The Promise of New Technologies to Address Academic Diversity 

 Although the potential of technology to supplement and even replace teacher-led 

instruction had been suggested long before the era of personal computers, significant 

improvements in information technology have led to a new round of calls for integrating 

technology and instruction (Cuban 1986; Tyack & Cuban, 1995; Wolf, 2010). Horn and Staker 

(2014) cite three rationales for technology-based instruction: (1) personalizing learning for each 

student; (2) providing all students with access to a wider array of high-quality content; and (3) 

controlling costs. Of the three, personalization is the most widely discussed and promoted. For 

example, billionaire Mark Zuckerberg recently announced personalized learning as a priority 

investment area of his newly minted Chan Zuckerberg Foundation, and the well-funded Bill & 

Melinda Gates Foundation, Michael and Susan Dell Foundation, and The Emerson Collective 

have also invested heavily in technology-based instructional models (Cavanagh, 2014; Herold, 

2016a). We should not be surprised that philanthropists who made their fortune in the technology 

sector have proven eager advocates for technology-based solutions within the field of education, 

nor that the personal passions and predilections of these billionaires can have an outsized 

influence on education policy and practice (Ravitch, 2010). 

 An additional rationale for technology-assisted instruction is the exponential increase in 

student learning data that can be captured via technology-based learning platforms. These data 
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are much larger in volume than traditional education data, and also of a much finer grain-size, 

time-specific and inherently longitudinal, and naturally integrated with information on program 

delivery (Krumm et al., 2018; Natriello, 2012, 2013). This not only offers the potential of 

allowing technology-based systems to learn and improve over time, but is also a boon to 

researchers. For example, in a study of off-task behavior, Baker and Gowda (2010) found that 

the use of automated behavior detectors reduced by an order of magnitude the time needed to 

analyze student behavior data compared to traditional text replay analysis methods. 

However, the research and development of personalized learning has been hampered by 

the lack of a consensus definition for what it actually means to be an “innovative” or 

“personalized” school. A recent EdWeek report suggested that “In the diverse and ever-changing 

world of educational technology, the term ‘personalized learning’ seems to be everywhere, 

though there is not yet a shared understanding of what it means” (Cavanagh, 2014). A 

consortium of prominent philanthropies, including the Bill & Melinda Gates Foundation, Eli & 

Edith Broad Foundation, and Michael & Susan Dell Foundation recently published the following 

“working definition of personalized learning:” 

Personalized learning seeks to accelerate student learning by tailoring the 
instructional environment—what, when, how and where students learn —to 
address the individual needs, skills and interests of each student. Students can take 
ownership of their own learning, while also developing deep, personal 
connections with each other, their teachers and other adults. Personalized learning 
includes [four elements]: (a) Learner Profiles - Each student has an up-to-date 
record of his/ her individual strengths, needs, motivations and goals; (b) Personal 
Learning Paths - All students are held to clear, high expectations, but each student 
follows a customized path that responds and adapts based on his/ her individual 
learning progress, motivations and goals; (c) Competency Based Progression - 
Each student’s progress toward clearly-defined goals is continually assessed. A 
student advances and earns credit as soon as he/she demonstrates mastery; and (d) 
Flexible Learning Environments - Student needs drive the design of the learning 
environment. All operational elements—staffing plans, space utilization and time 
allocation—respond and adapt to support students in achieving their goals 
(Education Week, 2014; Pane et al., 2017). 
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In 2010, a symposium convened by the Software & Information Industry of America 

(SIIA), ASCD, and Council of Chief State School Officers published an alternate list of essential 

elements for personalized learning, including: (a) Flexible, Anytime/Everywhere Learning; (b) 

Redefine Teacher Role and Expand “Teacher”; (c) Project-Based, Authentic Learning; (d) 

Student Driven Learning Path, and (e) Mastery/Competency-Based Progression/Pace (Wolf, 

2010). Although there is significant overlap between the definitions produced by the Gates 

Foundation and the SIIA symposium, there are also substantive differences in the role of the 

teacher and the prominence of project-based or authentic learning. 

 Further complicating matters, although the terms “blended learning” and “personalized 

learning” are often used interchangeably, they actually represent distinct but frequently 

overlapping constructs; a school may be blended without being personalized, or personalized 

without being blended (Picciano, 2014; Brodersen & Melluzzo, 2017). The Christensen Institute 

defines blended learning as “a formal education program in which a student learns: (a) at least in 

part through online learning, with some element of student control over time, place, path, and/or 

pace; (b) at least in part in a supervised brick-and-mortar location away from home; and (c) the 

methods along each student’s learning path within a course or subject are connected to provide 

an integrated learning experience” (Horn & Staker, 2014). In addition, many have used the term 

“competency-based learning” synonymously with both personalized learning and blended 

learning, although both the Gates and SIIA definitions included competency-based advancement 

as only one element of the broader personalization concept (Horn, 2017). This profusion of 

models and definitions has made it difficult to assess the overall effectiveness of blended or 

personalized learning models writ large, or even define whether a model should count as blended 

or personalized at all (Pane et al., 2015). 
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 However, despite these disagreements in how precisely to define new models, advocates 

of redesigning schools through technology-based personalization are united in their theory for 

how such models will support students. In their view, technology-based personalization will not 

only allow each student to engage with instruction that is matched to his or her unique aptitudes 

and interests, but also reduce costs, improve student outcomes, and expand access to often-scarce 

content like AP courses and foreign languages (Childress & Amrofell, 2016; Horn & Staker, 

2014). Some also argue that it will make teaching a more sustainable and rewarding profession 

and reduce burnout by shifting some tedious instructional tasks away from teachers (Arnett, 

2016; TNTP, 2014). In other words, if instructional content is increasingly delivered via 

technology, teachers will be able to focus on a more limited, sustainable, and rewarding set of 

tasks, such as building relationships with and motivating students. This may be particularly 

relevant in developing countries that may lack qualified teachers with domain-specific content 

knowledge (Muralidharan, Singh, & Ganimian, 2016). 

Focus of the Dissertation 

 In this dissertation, I examine the relationship between technology-based personalization 

and student learning outcomes through a case study of an anonymous technology-based 

personalized program (referred to from here forward as “TBPP”) in five public K-8 schools in a 

mid-sized urban district. TBPP, which is produced by a small non-profit organization, utilizes a 

technology-intensive personalized model in which an automated algorithm generates customized 

daily schedules for each teacher and student, including both specific learning objectives and 

formalized instructional tasks. These daily schedules are designed to maximize each student’s 

progress towards mastery of the Common Core Math Standards, the ultimate goal of the 

program. At the end of each day’s lesson, students take a short “exit slip” assessment, which is 
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automatically graded and used to update each student’s personalized list of skills to learn 

throughout the year. This list is then used to generate the next day’s personalized schedule for 

each student. 

 This study makes a significant contribution to the research literature by pushing inside 

the “black box” of personalized instruction to explore the specific school-level, class-level, 

student-level, and lesson-level mechanisms that contribute to overall student achievement. This 

includes an examination of the complex interactions among individual students, teachers, 

content, contexts, and learning methods. Although individual tutoring has long been understood 

as one of the most effective mechanisms for instructional delivery, much research on tutoring 

and small group instruction has focused on overall effects without attempting to explain the 

causal mechanisms by which the process works (Bloom, 1984; Corno, 2008; Snow & Swanson, 

1992; VanLehn, 2011). This is also true of the literature on technology-based personalization, 

which has typically addressed the general effects of various models on student learning more 

heavily than the specific avenues through which student learning is produced (Barrow, 

Markman, & Rouse, 2007; Murphy et al., 2014; Pane et al., 2015, 2017; Wang & Woodworth, 

2011; Wendt & Rice, 2013; Wenglinsky, 2005). Furthermore, much of the existing research on 

technology-based personalization in K-12 settings assumes that personalized models are being 

implemented as intended, but does not adequately explore the possibility that teachers or students 

may be buffering themselves from the attempted reform by continuing to act in ways that are 

typical of the traditional technology of schooling (Honig & Hatch, 2004; Tyack & Cuban, 1995). 

This dissertation has significant implications beyond the context of the TBPP program itself; a 

better understanding of the complex interactions among students, teachers, tasks, content, and 
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learning outcomes could have profound implications for all personalized learning models, as 

well as the wider phenomenon of classroom teaching and learning. 

This study will utilize TBPP as a case study to explore the following research questions:  

 

1. To what degree does the day-to-day, ground-level implementation of TBPP represent an 

authentic departure from the traditional technology of schooling? Conversely, to what 

degree are teachers and students engaging in symbolic reform while continuing to 

exercise traditional instructional patterns? 

2. What are the relationships among various elements of the TBPP model and student 

outcomes? 

a. What is the association between variation in daily exit slip score and variation in 

instructional method, teacher characteristics, group size, and/or content? Do these 

relationships vary for different types of students? 

b. To what extent do daily content assignment or exit slip data predict end-of-year 

results on the PARCC and MAP assessments? Does this vary for different types 

of students? 

 

In addition, this study will demonstrate the efficacy of several novel approaches to 

exploring the diverse, broad, and deep datasets produced by personalized learning programs. 

Although hierarchical linear modeling, cluster analysis, and data visualization heat maps have 

been applied effectively across a wide range of fields, this paper will represent one of the first 

times they have been applied to the daily instructional assignment and student outcome data 

generated by personalized learning program (Krumm et al., 2018). While the primary purpose of 
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this paper is not to break new methodological ground, it may nonetheless demonstrate a new and 

useful application of established statistical techniques to a type of data that is rapidly growing in 

volume and prominence. In 2016, Horn & Freeland Fisher described traditional education 

research as industrial in its assumptions of standardization at scale. Instead, they called for a new 

research model that explores personalized outcomes and harnesses the vastly richer data and 

enhanced analytic power created by recent technological advances. This paper will utilize TBPP 

as a case study to explore what this new research model could look like in practice.  
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2. Literature Review 

Academic Diversity and Personalization 

Context and historical trends. The necessity to differentiate instruction to meet pupils’ unique 

needs has existed for as long as education itself. Corno (2008) cites references to educational 

differentiation in Chinese, Hebrew, and Roman texts dating back more than two millennia. For 

example, the Roman rhetorician and teacher Quintilian wrote during the reign of Domitian that: 

Some students are slack and need to be encouraged; others work better when 

given a freer rein. Some respond best when there is some threat or fear; others are 

paralyzed by it. Some apply themselves to the task over time, and learn best; 

others learn best by concentration and focus in a single burst of energy. 

(Quintilian, trans. 1921) 

In addition to the above emphasis on differentiation by learning style, Quintilian also described 

the need for differentiation based on students’ prior knowledge and abilities. He used the process 

of climbing a tree as a metaphor for the ascent to knowledge, with the teacher’s role as helping 

each student climb to the branch just a little farther than the one he or she could reach unaided 

(Corno, 2008). 

 One of the earliest documented attempts to formally implement personalized learning in 

an American school district was the Pueblo Plan of the 1880s. The brainchild of Preston Search, 

superintendent of schools in Pueblo, Colorado, the Pueblo Plan rearranged the curriculum so that 

students could advance through material at their own pace. The distinction between grade levels 

was eliminated and teachers evaluated students based on how many units of study the student 

had completed rather than letter grades (Januszewski, 2001; Keefe & Jenkins, 2000; Tyack & 
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Cuban, 1995). Similar attempts at personalized models were implemented in St. Louis in the 

1870s, Cambridge, Massachusetts in the 1890s, and Portland, Oregon in the 1900s (McDonald, 

1915). While there is no consensus for why these models did not persist, one potential 

explanation is the degree to which each plan was associated with the charismatic superintendent 

who championed it. As the leaders who implemented the models moved on, school districts may 

have found it difficult to maintain their innovative structures in the face of isomorphic pressures 

from the broader institutional environment (DiMaggio & Powell, 1983; Meyer & Rowan 1977, 

1978). 

In 1916, John Dewey published a strong philosophical rationale for personalized models 

with his landmark “Democracy in Education.” In this and other texts, Dewey argued that 

children should not be marched lockstep through a curriculum, but instead encouraged to nurture 

their own learning through self-guided exploration and discovery (Dewey, 1916). Although 

never fully implemented at scale in American schools, Dewey’s ideas would provide much of the 

underpinning for pedagogical constructivism, a still-popular school of thought which suggests 

that students must authentically experience and engage with content in order to deeply 

understand it (Cohen, 1990; Wenglinsky, 2005). 

Dewey’s work, along with the work of Maria Montessori and other child-centered 

progressives, was also a strong influence on the Dalton Plan, a personalized model that generated 

intense interest among educators and the general public during the 1920s and 1930s. The Dalton 

Plan did away with self-contained classes, fixed times for discrete subjects, and annual 

promotions and retentions of students. Instead, students were empowered to negotiate monthly 

contracts with their teachers outlining both their minimum, mandatory tasks and additional 

opportunities for self-directed enrichment. Students moved at their own pace through the 
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curriculum and had significant latitude to choose their own content, peer collaborators, and 

physical workspaces. By 1932, nearly ten percent of American schools reported that they had 

implemented some version of the Dalton plan. However, this popularity would not prove 

durable; when a researcher attempted in 1949 to identify schools that still utilized the Dalton 

Plan, she found it in use at only a single site – the original Dalton School in Manhattan. Despite 

the early fanfare and publicity, the plan ultimately withered in the face of teachers objecting to 

the massive increase in paperwork, parents who worried about the plan’s effect on student 

discipline, and students themselves, who sometimes complained that maintaining a personalized 

learning plan was solitary and boring compared to traditional classwork completed in the 

company of peers (Tyack & Cuban, 1995). 

The theoretical justification for personalized learning was buttressed in 1978 when 

Harvard University Press published for the first time in English Lev Vygotsky’s framework for 

differentiating content through each student’s unique “zone of proximal development” 

(Vygotsky’s work had been published in the Soviet Union in the 1920s and 1930s, but did not 

attract attention in the West until the late 1970s). In this model, the zone of proximal 

development serves the same role as Quintillian’s next highest branch - just out of the student’s 

independent grasp, but reachable with guided support from a teacher. Subsequently, Howard 

Gardner (2011) and others have produced significant research on the effects of differentiation 

based on “learning style,” which can include instructional methods such as musical-rhythmic, 

visual-spatial, and verbal-linguistic. However, many others have disputed whether teaching 

students in their preferred learning style is associated with improved outcomes, or even whether 

distinct learning styles truly exist at all (Dembo & Howard, 2007; Paschler et al., 2008). 
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Historical challenges to personalized models. Although personalized instruction may 

be best-suited to meet the unique learning needs of each student, modern American schools were 

explicitly designed to promote standardization and uniformity. The structures that we associate 

with modern schooling, including single-teacher classrooms and age-grade cohorts, were charted 

and implemented by the “administrative progressives” at the turn of the 20th Century out of a 

desire to bring business-like rationality, hierarchy, and scientific management to the enterprise of 

education (Cuban, 1993; Tyack, 1991; Tyack & Cuban, 1995). Schools were designed to 

accomplish the dual goals of assimilating millions of young immigrants into a democratic 

American society while preparing all students to contribute to an industrial economy. Policies 

like the age-grade cohort allowed educators to impose a degree of uniformity across a large and 

heterogeneous group of students, while structures like the Carnegie unit and the division of 

knowledge into discrete subjects imposed a standardized bureaucratic structure across what had 

been a largely decentralized and incoherent educational enterprise (Bidwell, 1965). By 

implementing their vision for schooling at a moment when enrollments were rapidly expanding, 

the administrative progressives ensured that it would become embedded in regulation, 

legislation, and the public’s collective vision of legitimate schooling (Tyack & Cuban, 1995; 

Tyack & Tobin, 1994). 

This “one size fits all” design conflicts with the varying needs of a diverse student body. 

Bidwell (1965) provides one of the earliest and most effective analyses of how schools grapple 

with this tension. In his view, the age-grade cohort system combines teacher autonomy and the 

bureaucratic requirements for standardization, with advancement between grades roughly 

analogous to the examination of a product at different points on an assembly line. Bidwell argues 

that, “…the typical educational technology requires persisting interaction between an individual 
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teacher and his students. Such interaction permits the teacher to assess subtle variations in 

student performance and to adjust instructional methods accordingly, in a way which would not 

be possible were the student to move over very short periods of time from one teacher to 

another” (Bidwell, 1965). This means that the challenge of addressing the variability in student 

outcomes is vested in the classroom teacher, who is granted significant autonomy to modify 

instruction as he or she sees fit. However, a robust body of evidence suggests that this approach 

may be ineffective at scale, with teachers reporting significant levels of stress, overwork, and 

burnout while students are too often frustrated, unchallenged, and disengaged from classroom 

instruction (Beteille & Loeb, 2009; Carnoy & Levin, 1985; National Mathematics Advisory 

Panel, 2008). 

 Differentiation as a pedagogical strategy. Differentiated instruction, also known as 

adaptive teaching, is one of the most prominent classroom-level strategies for adjusting 

instruction to meet students’ unique and dynamic needs (Tomlinson, 2001). Corno (2008) 

describes adaptive teaching as the real-time assessment and differentiation which experienced 

teachers utilize throughout instruction. In his words, “In teaching adaptively, teachers respond to 

learners as they work. Teachers read student signals to diagnose needs on the fly and tap 

previous experience with similar learners to respond productively” (p. 161). Ball et al. (2008) 

and Shulman (1987) suggest that teachers’ ability to successfully engage in differentiated 

instruction is in large part determined by their pedagogical content knowledge, which includes 

the ability to diagnose student misunderstandings, generate appropriate models, and effectively 

explain complex and nuanced ideas. Troublingly, while pedagogical content knowledge may be 

significantly related to student achievement gains, incoming mathematics teachers’ 

understanding of content is frequently thin and rule-bound (Ball, 1990; Hill et al., 2005). 
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While differentiated instruction is widely recognized as characteristic of good teaching, 

there is little evidence that teachers are capable of implementing it successfully at scale (National 

Mathematics Advisory Panel, 2008; Tomlinson et al., 2003). In one recent study, researchers 

provided teachers with extensive professional development and ongoing coaching on how to 

implement differentiation in their classrooms. However, three years later, they found no increase 

in the level of differentiation utilized by these teachers (Petrilli, 2012). Teachers themselves 

admit that they struggle to implement differentiation in their classrooms. In a 2008 national 

survey, more than eight in ten teachers said that differentiated instruction was “very” or 

“somewhat” difficult to implement (Farkas et al., 2008). Likewise, in a 2010 survey, a similar 

proportion of education school professors acknowledged that it is difficult to tailor instruction to 

match the individual needs of students on a daily basis (Farkas, 2010). In the words of one 

professor, “We are asking teachers to be more integrative, to be more focused on the interests of 

the children, to be more focused on individualizing…Yet we are still talking twenty five kids in a 

classroom and one teacher…We don’t have homogeneous classrooms anymore and our teachers 

are still being treated as if everybody is homogeneous, so it doesn’t work.” Differentiation across 

a class of twenty to thirty students may simply be too difficult for the vast majority of teachers to 

execute effectively without adopting an unsustainable workload (Delisle, 2015). 

 Given that the challenge of implementing differentiated instruction increases as classes 

become larger and more diverse, the instructional form most conducive to utilizing it is 

individual tutoring. Tutoring delivers value through two separate mechanisms: (1) targeted 

instruction focused on the precise skills and content in the student’s zone of proximal 

development, and (2) increased ability to motivate students through relationship-building and 

improving their attitudes towards the subject matter and themselves as learners (Snow & 
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Swanson, 1992). Indeed, Bloom (1984) used a randomized control trial to demonstrate that 

students participating in individual or small group tutoring typically performed two full standard 

deviations higher than students participating in traditional whole-class instruction. Interestingly, 

a third group of students who learned in a whole group setting using teacher-led adaptive 

techniques achieved results one standard deviation higher than the control, reaffirming the 

potential of individual adaptation and differentiation to support learning. In a meta-analysis of 

studies on human and automated tutors, VanLehn (2011) found a smaller effect size of 0.79 for 

human tutoring and 0.76 for automated tutoring, but reaffirmed the power of adaptive and 

competency-based instruction regardless of instructional method. Bloom also found tutoring and 

adaptive teaching to be highly correlated with student engagement, with students in the 

traditional classroom spending 65% of time on task, students in a large adaptive classroom 

spending 75% of time on task, and students engaged in tutoring spending 90%+ time on task. 

The Use of Technology to Personalize Instruction 

The theoretical rationale for technology-based personalization. Over the last decade, 

prominent figures from the business and philanthropic worlds have argued that new technologies 

offer the power to effectively deliver differentiated instruction to all students and significantly 

improve student outcomes. One of the most influential of these voices is that of Clayton 

Christensen, the Harvard Business School professor and coiner of the phrase “disruptive 

innovation” (Christensen, 2013). In Christensen’s view, established market leaders rarely create 

fundamentally innovative products, since their past successes lock them into a business model 

and mindset aligned with their existing value proposition. Instead, innovation typically comes 

from “disruptive” entrepreneurs, often from outside the sector. These disruptors begin by 

offering alternative, inferior products to customers who are not currently served by or cannot 
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afford high-quality, mainstream products. However, in time, the disruptors use the revenue from 

those early adopters to refine and improve their products, eventually displacing the previously 

dominant players. One classic example is the process by which transistor radios replaced vacuum 

tube radios. Initially, the disruptive transistor radio was inferior to the established vacuum tube 

radio. However, American teenagers purchased them as a cheap alternative, and in time 

transistor technology improved to the point that they completely supplanted once dominant 

vacuum tube radios (Christensen, 2013). Although Christensen’s theory of disruptive innovation 

is disputed by some, it remains popular among the Silicon Valley entrepreneurs and investors 

who are among the most ardent advocates for leveraging technology as a tool to improve K-12 

instruction (Lepore, 2014). 

In 2008, Christensen extended this argument to the field of education. He and his co-

authors argued that the stagnant outcomes, century-old design, and lack of innovation in 

American public schools were typical of an industry ripe for “disruption.” They identified online 

learning as an innovation that would supplant traditional brick-and-mortar schools, predicting 

that by 2019 half of all high school classes would be taught online (Christensen et al., 2008). 

Perhaps in part due to the inaccuracy of such predictions, technology advocates have recently 

shifted their focus from entirely virtual learning to blended learning, a model in which students 

spend part of their time learning from a teacher and part learning through technology (Horn & 

Johnson, 2012). The NewSchools Venture Fund recently suggested that $4 billion in strategic 

philanthropic investment could lead to 7% of schools transitioning to these types of “innovative 

models” over the next 10 years (Childress & Amrofell, 2016). While this is less ambitious than 

Christensen’s initial estimate of half of all classes moving online, it still represents nearly 7,000 
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schools serving 3.5 million students, more than the total amount currently enrolled in all charter 

schools nationwide (Mead et al., 2015). 

Advocates for new technology-based instructional models have been remarkably 

successful in attracting the attention of the popular press and well-heeled philanthropists. In 

2015, Facebook founder Mark Zuckerberg announced that he would eventually give away 99 

percent of his $45 billion fortune, with personalized learning as a priority investment area 

(Herold, 2016a). Zuckerberg outlined his bold philanthropic ambitions in a recent speech, 

stating, “Our hope over the next decade is to help upgrade a majority [of America’s] schools to 

personalized learning and then start working globally as well… Giving a billion students a 

personalized education is a great thing to do” (Singer, 2017). Laurene Powell Jobs, the widow of 

billionaire Steve Jobs, recently made national headlines by donating $100 million to support high 

schools that adopt innovative, engaging approaches to learning, particularly for low-income and 

minority student populations (Gewertz, 2016). This philanthropic money is matched by increases 

in private investments in K-12 ed-tech companies, which grew from $77 million in 2010 to $537 

million in 2015 (Childress & Amrofell, 2016). Although some have argued that technology 

companies making philanthropic investments in research and advocacy while simultaneously 

marketing for-profit educational software may pose a conflict of interest, such concerns are 

unlikely to slow the rising tide of enthusiasm for new and disruptive models (Ravitch, 2010). 

The research evidence on technology-based personalization. The exuberance for 

technology-based personalization is not backed by a robust and conclusive body of empirical 

evidence on its effectiveness. A comprehensive meta-analysis of blended learning studies found 

only seven K-12 effect sizes from five high-quality studies, with two effect sizes favoring face to 

face instruction and five effect sizes favoring blended instruction (Means et al., 2010). Notably, 
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the authors found more than ten times as many studies examining blended or online instruction 

in higher education than in K-12 settings. Similarly, while a federal commission reported in 2008 

that the use of instructional software has generally shown positive effects on mathematics 

achievement, it hedged that “Taken together, the available research is insufficient for identifying 

the factors that influence the effectiveness of instructional software under conventional 

circumstances” (National Mathematics Advisory Panel, 2008, p. xxiv). More recent studies have 

similarly found some positive effects, but the diversity of models, contexts, and methodologies 

make it difficult to draw sweeping conclusions about technology-based personalization as a 

whole (Brodersen & Melluzzo, 2017). For example, one study of blended learning in five charter 

networks found a wide array of instructional software and models in use, with a mixture of 

positive and negative effects. It also found that schools exhibited an eagerness to continually 

experiment with their models, meaning that even within a single school, the vision for blended 

learning was likely to change over time (Murphy at al., 2014a).  

Several studies have attempted to address this issue by limiting their focus to specific 

programs or districts, but also reported uncertain estimates and mixed effects. Wendt & Rice 

(2013) found that the implementation of the online ST Math program produced positive results in 

some grades, but not others; Wang & Woodworth (2011) found that blended use of the 

Dreambox math program produced significant positive effects in overall mathematics 

achievement and a subtest score for measurement and geometry, but no effect on the subtests for 

problem solving, number sense, computation, or statistics and probability. The Center for 

Education Policy at Harvard University (2016) also found small positive effects for the use of 

Dreambox in a separate study. Murphy et al. (2014b) found that the implementation of Khan 

Academy varied so significantly within schools that it would be impractical to even attempt to 
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estimate a uniform effect on student achievement. In some cases, excitement over the newness of 

the personalized model may cause researchers or writers to overstate their effectiveness; the 

author of one white paper gushed that Summit Public Schools’ blended model represents the 

future of learning, despite the fact that students’ academic growth only marginally exceeded the 

national average in 2014-15 (Osborne, 2016). 

Many of these technology-based tutoring systems trace their design to computer-assisted 

instructional tools that were built at Carnegie Mellon University in the 1970s and 1980s (Murray, 

1999; Yazdani, 1987). These systems began with simple branching trees of instructional content, 

but eventually expanded to include the ability to generate new questions based on pre-set 

mathematical operations and general teaching strategies. More recently, intelligent tutoring 

systems such as Reasoning Mind, ALEKS, and ASSISTments have been found to produce 

significant student gains in some contexts compared to traditional instructional models (Hardy, 

2004; Koedinger et al., 1997). These tools have been discussed extensively in the learning 

analytics and educational data mining literature, and the underlying mathematical principles used 

to create them were essential in developing many of the technology-based personalization 

programs that are currently being used in classrooms across the country. 

One of the most prominent and widely heralded attempts to implement technology-based 

personalization is Teach to One: Math (Childress & Amrofell, 2016; Horn & Staker, 2014). The 

initial pilot of the program was named one of the Top 50 Inventions of 2009 by TIME magazine, 

and it has since been covered favorably by The Washington Post, Education Week, and Forbes 

(Brown, 2012; Horn, 2013; Vander Ark, 2017). In 2016, Bill Gates dubbed Teach to One “the 

future of math,” and his Bill & Melinda Gates Foundation is one of several prominent 

philanthropies that have invested tens of millions of dollars in the program (Newcomb, 2016).  
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However, despite its success in attracting philanthropic donations and positive attention 

from the popular press, the small amount of research conducted on Teach to One so far indicates 

a mixed and uncertain impact. One early study using a randomized control design found no 

effect on student learning, although the study’s author acknowledges that this result is imprecise 

due to the study’s very small sample size and several methodological issues that arose during 

implementation (Rockoff, 2015). The same study also collected evidence via surveys that 

indicated that teachers and administrators believed the program was effective, while students 

were initially skeptical, but came to accept the program in the second year of implementation. 

Two reports by researchers at Teachers College, Columbia University found gains that surpassed 

national norms, with the highest gains for students who started the year with the lowest academic 

ability. However, these reports were based on comparisons to national norms from the NWEA 

MAP assessment, an analytic approach that does not support robust conclusions. Not 

surprisingly, the authors cautioned that they were unable to make causal inferences based on the 

available data, and emphasized that the results were highly heterogeneous across schools, with 

some schools experiencing statistically significant negative growth (Ready, 2014; Ready et al., 

2013). A recent study of Teach to One’s first-year implementation in a mid-size urban district 

utilizing a more robust comparative interrupted time series approach found no significant effect 

across all grades combined (p>.10). However, the estimates varied somewhat across grade levels, 

with a marginally significant negative impact of Teach to One participation on student 

mathematics performance in fifth grade (ES = -0.371 SDs; p<.10) and no significant effects in 

sixth through eighth grades (Ready et al., 2017). 

Many of the studies of K-12 blended learning that have been published are limited by the 

absence of robust comparison groups. For example, one widely cited study reported that sixty-
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two public charter and district schools utilizing personalized approaches produced significantly 

improved student results in both math and reading, with larger gains for students who 

experienced personalized learning for the longest amount of time (Pane et al., 2015). However, 

the study employed “virtual comparison groups” generated by the Northwest Evaluation 

Association (NWEA) to generate these findings. Although the sample included schools across 

multiple districts and states, the comparability of the treatment and “comparison” schools 

remains unclear. In addition, every school in the study had previously applied for and been 

accepted into a competitive grant-making program, suggesting potential selection bias due to 

some common unmeasured characteristic associated with improved student learning, such as 

strong leadership or a cohesive instructional vision. Data and analytic methods used by other 

studies of blended learning, although strong in many respects, also raise questions about the 

equivalency of treatment and control groups (Center for Education Policy at Harvard University, 

2016; Murphy et al., 2014a; Pane et al., 2017; Ready, 2014; Ready et al., 2013; Rockoff, 2015; 

Wenglinsky, 2005; Woodworth et al., 2015).  

The didactic nature of many instructional technologies, combined with the multiple-

choice and procedural format of most standardized assessments, can also create a bias in 

assessments that impedes effective evaluation. For example, recent studies of programs funded 

by the Next Generation Learning Challenges (NGLC), Charter School Growth Fund’s Next 

Generation School Investments, and the Gates Foundation’s Personalized Learning Pilots all 

measured student achievement using the Northwest Evaluation Association (NWEA)’s Measures 

of Academic Progress (MAP) assessment, a multiple-choice test that does not require 

collaboration, argumentation, or oral or written communication (Murphy et al, 2014a; Pane et al., 

2015, 2017). If these technology-based instructional models only improved students’ procedural 
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skills at the expense of a broader set of higher-order thinking skills, the MAP test and similar 

assessments would likely provide an overly optimistic assessment of learning.  

The very small number of high quality studies that do exist show either no effect or a 

positive effect in a very narrow context, raising questions about their external validity. For 

example, while several studies have used rigorous randomized designs to find significant 

positive effects for computer-aided Algebra programs, there is no evidence that these results are 

replicable outside of that specific subject (Barrow, Markman, & Rouse, 2007; Pane et al., 2013). 

One of the most promising recent studies comes from an after-school program in urban India, 

which used a randomized experimental design and found that students using online learning 

software made significant gains in math and Hindi compared to a control group. However, it is 

unclear how well these results might translate to instruction within the school day or in an 

American context (Muralidharan, Singh, & Ganimian, 2016). 

Perhaps the most conclusive finding in the research literature is the ineffectiveness of 

“virtual” models that deliver instruction entirely online without a face-to-face component. Means 

(2010) found no effect for online-only instructional models compared to face-to-face instruction, 

and a comprehensive study by the Center for Research on Educational Outcomes (CREDO) at 

Stanford found large and significant negative effects for online charter schools, with students 

making the equivalent of 72 fewer days of reading growth and 180 fewer days of math growth 

compared to demographically similar “twins” in traditional brick-and-mortar district schools 

(Woodworth et al., 2015). The National Education Policy Center has also published a series of 

reports indicating that the outcomes of students enrolled in virtual and online-only schools lag 

significantly behind those at traditional brick-and-mortar schools (Huerta et al., 2015; Miron et 

al., 2013; Molnar et al., 2014). Many virtual schools are more loosely regulated than their 
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traditionally structured counterparts, increasing the likelihood of fraud and abuse; a recent report 

by Education Week described in damning detail how only 55% of students enrolled in 

Colorado’s largest online charter school logged into the school’s instructional portal in a typical 

week, with a paltry 0.1% of students engaging with the school’s online content for the 

recommended 20 hours per week or more (Herold, 2016b). Defenders of virtual schools suggest 

that they enroll more difficult-to-serve students or those that are already more likely to drop out 

at time of enrollment, although most published studies contain robust demographic controls that 

should account for such differences in student backgrounds. 

Variability by context and student characteristics. As is often the case in attempted 

school reforms, technology’s effect on teaching and learning is highly dependent on the specific 

details of the program and the context in which it is implemented (Cohen, Raudenbush, & Ball, 

2003). Teachers and administrators consistently cite the variable quality of instructional 

software, unreliability of hardware, poor integration of data systems, and unavailability of 

internet bandwidth as key obstacles to successful implementation (Freeland & Hernandez, 2014; 

Hew & Brush, 2007; Murphy et al., 2014a; Pane et al., 2017). Teachers’ unfamiliarity with 

software and a lack of quality professional development and coaching are also key barriers 

(Cuban, 1986; Hew & Brush, 2007; Murphy et al., 2014a). By increasing student autonomy, 

blended and personalized learning models also increase the importance of strong classroom 

management; there is evidence that American students are prone to engage in off-task behavior 

when using technology for instructional purposes (Baker and Gowda, 2010; Murphy et al., 

2014a; Rodrigo, Baker, Ryan, & Rossi, 2013). 

The effect of instructional technology on student outcomes is also likely to be dependent 

on the age of the participating students. Much of the innovation in personalized learning has 
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occurred in grades five and up, where students are perceived to be more capable of learning 

autonomously (Christensen et al., 2008). In contrast, many early childhood and elementary 

educators have been deeply skeptical of technology’s ability to supplement or replace teachers 

(Cordes & Miller, 2000). Some suggest that reformers’ “infatuation” with computers distracts 

from addressing young children’s most pressing needs, which include strong bonds with caring 

adults, hands-on experiences with the physical world, and time for unstructured play. Others 

warn that computers pose a risk to students’ physical health, including vision problems and 

obesity (Cordes & Miller, 2000).  

Troublingly, some evidence indicates that technology-based programs may exacerbate 

existing race- and income-based inequalities (Philip & Olivares-Pasillas, 2016). Wenglinsky 

(2005) found that low-income and minority students are more likely to use technology for 

didactic, “drill and practice” instruction, which NAEP data show to be negatively associated with 

academic achievement. A separate study of the online Cognitive Tutor system for high school 

Geometry found that students in urban schools were significantly more likely to make careless 

errors and engage in off-task behavior than students in suburban and rural schools (Baker & 

Gowda, 2010). However, since this study included no control for traditional instruction, it is 

unclear whether the use of technology produced, mitigated, or is entirely unrelated to this gap. 

The potential for instructional differentiation to reinforce inequality can exist even in the absence 

of any digital technology; in his study of instructional adaptation in traditional classrooms, Corno 

(2008, p.166) found that “Some teachers form subgroups for differential treatment but… 

inadvertently lower standards and reduce opportunities for students whom they believe cannot do 

the work.” Although forcing all students to move at the same pace through the same content may 

be inefficient for students whose abilities fall far below or above grade-level norms, it could also 
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have a leveling effect as all students receive consistent supports in pursuit of a common goal. In 

contrast, allowing students to move at their own pace could widen inequalities by allowing 

strong students to race ahead while inadvertently reducing expectations for students whom 

teachers or algorithms have determined cannot do grade-level work (Corno, 2008). 

Competing Paradigms for Instructional Improvement 

Investment in teacher capacity and skill. Many of the most prominent strategies for 

instructional improvement over the last twenty years are at best unrelated and at worst 

contradictory to technology-based approaches. For example, the bulk of the recent literature on 

school improvement has called for greater investment in teachers’ capacity and skill rather than 

supplementing or supplanting them with new technologies (Ball & Cohen, 1999; Chetty at al., 

2011; Elmore, 2010). Ball and Cohen (1999) describe teachers as the key instructional mediators 

and ultimate determinants of student learning. In their view, teachers’ own opportunities to learn 

are perhaps the most crucial factor in improving students’ academic outcomes. Many of the 

instructional techniques most heralded in the literature are also particularly difficult to deliver 

solely via technology, including those that ask students to analyze unfamiliar situations, invent 

mathematical procedures, and solve interdisciplinary problems in unpredictable contexts 

(Grouws & Cebulla, 2000). Some have suggested that the best teachers do not engage in any 

direct instruction or evaluation at all, but instead simply pose well-designed problems and ensure 

that each student’s thinking is transparent to the rest of the class, tasks for which computers seem 

particularly poorly suited (Stein, 2001).  

Teachers’ ability to engage in these types of instruction is highly dependent on their 

pedagogical content knowledge. As first described by Shulman (1986), pedagogical content 

knowledge is the collection of skills and understandings required to successfully teach a specific 
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domain of content. For example, teaching a student to add fractions requires not only general 

pedagogical skills and the ability to correctly complete the relevant mathematical procedures, but 

also the deeper knowledge of fractions needed to assess subtle student misunderstandings, design 

effective models, and appropriately scaffold content for above- and below-grade level students 

(Ball, 2008). In recent years, Deborah Ball and others have exerted significant effort to assess the 

nature and effects of pedagogical content knowledge. Among their most prominent findings are 

that (1) many pre-service teachers lack pedagogical content knowledge and believe that 

mathematics is simply a series of rules to be memorized; (2) teachers’ pedagogical content 

knowledge is at least somewhat domain specific, meaning that teachers can be more or less 

effective at teaching different content based on the depth of their knowledge of that content; and 

(3) teachers’ pedagogical content knowledge in mathematics is significantly related to student 

achievement (Ball, 1997; Hill et al., 2005). 

Emboldened by this research, many academics, policymakers, and educators have called 

for a reform agenda focused on building the pedagogical content knowledge and instructional 

capacity of teachers. For example, Ball and Cohen (1999) advocate for reconceiving professional 

development as an inquiry-based activity grounded in practice. Similarly, Richard Elmore has 

spent the latter half of his career advocating for practices such as instructional rounds, peer 

observation, and peer accountability designed to build teachers’ instructional capacity through 

the long, hard work of collaborative inquiry (Elmore, 1996, 2006, 2010; Elmore & Birney, 

1997). These researchers underscore the importance of teachers and students building both 

procedural fluency and deep, multifaceted understanding of content. They describe “knowing 

math” as not just getting the right answer or understanding relevant procedural rules, but also 

knowing why a rule is true and how it connects with other big mathematical ideas (Ball, 1990). 
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Critically, they emphasize the difficulty of accurately assessing what a student truly knows, or 

what “knowing” even means, and claim that robust pedagogical content knowledge centered in a 

talented human teacher is the best possible tool for the ongoing assessment of students’ 

knowledge and the targeting of instruction to students’ needs (Ball, 1990). 

This paradigm for teaching, learning, and instructional improvement stands in stark 

contrast to the assumptions of many technology-based personalized models. Most instructional 

technology programs rely on algorithms that assume knowledge to be binary – students have 

either mastered a specific skill or not – and assess learning through automated multiple choice 

assessments (Arnett, 2016; New Classrooms, 2017; Rockoff, 2015). This overwhelming reliance 

on relatively unsophisticated assessment stands in opposition to Ball & Cohen’s assertion that 

educators must “confront the inherent inconclusiveness and incompleteness of knowledge,” (p. 

17) as well as Stein’s belief that short, multiple-choice assessments with clearly defined right and 

wrong answers completely preclude the kind of creative, student-generated discussion required 

for deep learning (Cohen & Ball, 1999; Stein, 2001). The work of Ball and others also suggests 

that programs like TBPP may inhibit teachers’ effectiveness by requiring them to deliver 

instruction across a wide band of grade levels with minimal time for preparation, reducing their 

ability to build relevant pedagogical content knowledge (Ball et al., 2008). Finally, assigning 

different tasks and content to each student may make it difficult for teachers to collaboratively 

study student work, preventing the shared inquiry advocated by Elmore (1996).  

Gaps in the Research Literature 

 Given the rapid pace of innovation in technology-based instructional models, we should 

not be surprised to find significant gaps in the research literature. First, while several studies 

have measured the overall effects of technology-based instruction, they have largely treated 
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instruction as a “black box,” and have neglected to explore the specific mechanisms through 

which student learning is produced (Barrow, Markman, & Rouse, 2007; Wenglinsky, 2005). For 

example, a succession of recent research funded by the Bill & Melinda Gates Foundation cited 

the diversity of the models under study as a barrier to examining the ground-level mechanics of 

instructional delivery; the authors of the Gates studies argue that “Although [certain] core 

attributes are common among the schools in the study, there is considerable diversity in the 

details of the schools’ instructional models because innovation was encouraged in the 

competitive grant programs they participated in. That is, the schools in this study are not 

adopting a single standardized model of personalized learning” (Pane et al., 2015, p.3). In short, 

while some research has documented the degree to which technology affects learning outcomes, 

there is a deficit of evidence on the specific classroom-level, group-level, and student-level 

avenues by which these effects are generated. More work is required to document how 

technology-based instructional models affect and are affected by student characteristics, the role 

of the teacher, and the location, context, and nature of instruction.  

 In parallel, the literature on technology-based instruction would benefit from additional 

studies of comprehensive reforms rather than supplemental or add-on programs. Many of the 

effect sizes currently documented in the literature are for after-school tutoring programs, out-of-

class interventions, or other modes of instructional delivery positioned in addition to, rather than 

in the form of, core classroom instruction (Barrow, Markman, & Rouse, 2007; Muralidharan, 

Singh, & Ganimian, 2016; Pane el al., 2013). The few studies of comprehensive instructional 

programs that do exist generally fail to thoroughly document the precise nature of the model 

under study, leaving some ambiguity as to the key classroom-level differences between 

traditional, teacher-led models and the new, technology-enabled model (Murphy et al., 2014a; 
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Pane et al., 2015). The research literature would benefit from additional studies that examine 

how comprehensive models of technology-assisted instruction affect and are affected by the 

technical core of schooling, including the role of the teacher, the role of the student, the 

organization of instruction, and quantifiable measures of academic achievement (Elmore, 2010). 

 This is particularly relevant given the rich body of literature on the difficulty of enacting 

reforms that meaningfully impact the technical core of schooling (Bidwell, 1965; Carnoy & 

Levin, 1985; Cohen, 1990; Cuban, 1986, 1990, 1993; Elmore, 1996, 2010; Tyack & Cuban, 

1995). The past century of American education is littered with abundant examples of well-

funded interventions that are promising in theory, but fail to meaningfully affect the core 

interactions among teachers, students, and content. Schools and teachers have a well-documented 

propensity to adopt reforms only symbolically or partially while buffering classroom practice 

from meaningful and enduring change. Indeed, when researchers from the Rand Corporation 

visited the classrooms of forty schools attempting to implement personalized learning between 

2012 and 2015, they found that none of the schools were as radically different from traditional 

schools as theory had predicted (Pane et al., 2017). These historical and recent examples 

illustrate the acute need to look beyond the macro-level effect sizes reported in the existing 

literature on technology-based personalization in order to document how technology-based 

personalization truly affects teaching and learning (Cohen, 1990; Cohen & Barnes, 1993; 

Elmore, 1996; Honig & Hatch, 2004; McLaughlin, 1987; Spillane, Reiser, & Reimer, 2002; 

Weick, 1976).
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3. Theoretical Framework 

This paper examines how an attempt to redesign instructional delivery using technology-

based personalization affects the technical core of schooling and student outcomes. Although 

TBPP is only one of many instructional models currently attempting to operationalize 

technology-based personalization in schools, it is typical of the movement as a whole in its 

utilization of individualized learning pathways, dynamic and homogeneous groupings, and 

digital technology as an evaluator, sorter, and instructor of students. In this paper, I draw upon 

theories of New Institutionalism, institutional isomorphism, and instructional reform to evaluate 

the effectiveness of TBPP – and by implication, technology-based personalization writ large - in 

substantively altering the technical core of schooling and enhancing student outcomes.  

The Traditional Technology of Schooling 

The instructional core. TBPP is one of many current attempts to reform the technical 

core of schooling through technology-based personalization. Its proponents hope to replace 

today’s industrial education model, which assumes standardization at scale, with a post-industrial 

model that assumes personalization and differentiation. The technical core, also known as the 

“instructional core,” is the fundamental level at which teaching and learning occurs. In simplest 

terms, it is defined as the interaction of teacher and student in the presence of content (Elmore, 

Fiarman, & Teitel, 2009). Given the pivotal role of the instructional core in determining student 

learning outcomes, any attempted reform is effective only insofar as it influences one of its three 

central pillars; a reform must alter the level of content, teachers’ knowledge and skill, and/or 

student engagement in order to impact student learning outcomes (Cohen, 1990; Cohen, 

Raudenbush, & Ball, 2003; Elmore, 1996, 2010; Hess, 1999; McDonnell & Elmore, 1987). Some 

have gone so far as to declare that “if you can’t see it in the core, it’s not there,” effectively 
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declaring all reforms to be meaningless if they do not affect the instructional core (Elmore, 

Fiarman, & Teitel, 2009).  

 

Figure 1: The Instructional Core 

 

 

Despite numerous efforts at reform over the last century, the technology of schooling has 

remained stubbornly consistent (Bidwell, 1965; Carnoy & Levin, 1985; Cohen, 1990; Cuban, 

1986, 1990, 1993; Elmore, 1996, 2010). In this traditional model, teachers act as presenters of 

knowledge and students as passive recipients. Physically, groups of twenty to thirty students are 

oriented towards the “front” of the room, where a single teacher presents information through 

various media. All of the students in the class study the same content at the same time; when 

differentiation occurs, it comes in the form of scaffolds to help struggling students access content 

rather than a differentiation of the content itself. Although students may spend time working in 

groups or individually, they typically do so under a high degree of supervision and in pursuit of a 

learning target that is shared by the entire class. The overriding metaphor is that of the industrial 
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assembly line, with batches of students exposed to a uniform set of content for a fixed period of 

time, assessed, then advanced to the next set of content. New technological advances have been 

seamlessly integrated into this process without disrupting its fundamental contours, as radio, 

overhead projectors, and video supplement the teacher as the top-down mechanism for delivering 

knowledge to students. 

The durability of the traditional technology of schooling. The historical record and a 

wide body of research literature provide ample reason for skepticism of technology’s power to 

substantially affect the instructional core. Radio, television, and the personal computer were each 

heralded as potentially revolutionary educational tools in their time, but each failed to 

fundamentally change the technical core of teaching and learning (Cuban, 1986). The work of 

Tyack & Cuban (1995) provides a compelling narrative of how and why these and similar reform 

efforts have failed in the past. In their view, the most durable efforts to reform schools have 

typically involved either cosmetic changes or “add-ons” that leave the technical core of student, 

teacher, and content unaffected. For example, while reforms such as adding kindergarten grades 

or reducing class sizes require additional resources, they do not demand a substantial change in 

educator practice. In contrast, reforms targeted at the fundamental “grammar of schooling,” like 

the Dalton Schools and the Eight-Year Plan, failed to gain widespread popular support and 

eventually withered (Cuban, 1990; Tyack & Cuban, 1995).  

 The resiliency of the traditional technology of schooling within the instructional core can 

be traced to several fundamental root causes. The first is a product of timing, whereby the 

policies favored during the massive educational expansion of 1880 to 1930 became “baked into” 

the fundamental logic of schooling. (Bidwell, 1965; Tyack, 1991; Tyack & Cuban, 1995; Tyack 

& Tobin, 1994). For example, a sprawling body of legislation and regulation has codified many 
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of the traditional structures of schooling, including the organization of students into age-grade 

cohorts, the division of knowledge into discrete subjects like social studies and science, and the 

importance of the Carnegie Unit in eligibility for graduation. Many of these structures spurred 

the creation of built-in constituencies with strong incentives to maintain the status quo, including 

teachers unions, vendors, professional associations, and postsecondary institutions. School 

buildings themselves also represent a physical codification of the traditional technical core of 

schooling, with an “egg crate” architectural design that divides space into roughly identical 

classrooms fit for twenty to thirty students each (Tyack & Cuban, 1995). Indeed, one of the 

primary obstacles in implementing personalized models like TBPP is finding or building spaces 

inside of traditional school buildings in which instruction can be delivered to one hundred 

students simultaneously (Pane et al., 2017) 

A second fundamental barrier to reform is the decentralized and fragmented political 

control of American education, which has generally impeded consistent change initiatives across 

district and state lines (Cohen & Bhatt, 2012). This problem is exacerbated by competing and 

ambiguous goals for the educational enterprise itself, which have often prevented coherent 

policymaking (Carnoy & Levin, 1985; Labaree, 1997). Schools have been asked at varying times 

to prioritize the competing ideals of democratic equality, social efficiency, and social mobility, 

producing an incoherence that inhibits their ability to successfully accomplish any one of the 

three. Cuban (1990) describes how dominant social groups have often chosen to assign social 

and political problems to schools rather than attack them head-on, which would create more 

conflict and dislocation. For example, during the Civil Rights era, schools were tasked with 

promoting racial integration and social justice, while twenty years later during an era of 

globalization and international business competition they were assigned the task of promoting 
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economic competitiveness through rigor and skill development (Cross, 2004). These whipsawing 

priorities prevented coordinated and systemic effort to advance either achievement or equity, 

instead producing additional layers of bureaucracy and incoherence (Elmore, 1993). This conflict 

between the competing goals is one of many irresolvable tensions that inhibits coherent attempts 

to reform the technical core (Stone, 2002).  

These tensions have also combined to prevent the creation of a cohesive and widely 

utilized technical body of knowledge regarding teaching and learning that could serve as a 

rallying cry for reorganization and instructional improvement (Cohen & Bhatt, 2012; Cohen, 

Raudenbush, & Ball, 2003; Labaree, 1992). Prior to becoming teachers, all educators spent 

decades as students themselves in classrooms that were organized according to the traditional 

technology of schooling; this gives them a schema and predisposition towards current methods 

rather than the blank slate enjoyed by entrants into other professions (Cuban, 1993). Preparing 

teachers to implement a new instructional model would require time for collaboration, feedback, 

and knowledge formation, which currently does not exist in most schools (Spillane, 2005; 

Spillane, Reiser, & Reimer, 2002). Unlike many other professions in which collaboration is the 

norm, the organization of schools into isolated classrooms deprives teachers of the opportunity to 

share best practices and learn from one another as professionals, further inhibiting reform 

(Elmore, 2010). 

Institutional Barriers to Reform 

Decoupling and technology/task misalignment. The factors described above have 

contributed to schools’ adopting a loosely coupled structure in which reforms are adopted 

symbolically while the technical core remains largely untouched (Meyer and Rowan, 1977, 

1978; Weick, 1976). In contrast to traditional Weberian notions of hierarchical authority, 
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bureaucratic control, and rational behavior, loosely coupled organizations gain legitimacy 

through the adoption of the myths, rituals, and ceremonies of the broader environment 

(DiMaggio & Powell, 1983; McLaughlin, 1987; Scott & Davis, 2007). This allows them to 

represent themselves as “legitimate” in the eyes of various stakeholders while abstaining from 

the difficult and uncertain work of improving the technical core. In a survey of 57 districts, Hess 

(1999) found widespread evidence that superintendents, confronted with the challenges of a 

difficult-to-access technical core, a lack of widely accepted goals and measurements, and 

competing pressures from multiple stakeholders, responded by adopting a variety of symbolic 

and divergent reforms that were ultimately ineffective in improving instruction. A cynic might 

wonder if recent calls to integrate technology and instruction may result in similarly symbolic 

reforms, with superintendents eager to claim the legitimacy and resources gained by adopting 

personalized learning models while experienced teachers and principals assume that “this too 

shall pass.” 

The foundational literature on organizational theory provides additional reasons to doubt 

reformers’ optimism. This research suggests that an organization’s efficiency will be maximized 

when management style, technology, task, and environment are all in alignment. For example, in 

simple and predictable environments, efficiency can be maximized through automation and top-

down decision-making, while in complex and unpredictable environments, person-centered 

technologies and distributed decision-making will maximize efficiency (Burns & Stalker, 1961). 

Simple environments are those in which procedures are simple, stable, or homogeneous, while 

complex environments are those in which procedures are unique, unknown, or shifting 

(Henderson & Nutt, 1978). Similarly, Van de Ven & Delbecq (1974) classify task complexity 
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according to two independent dimensions: task difficulty and task variability. The lower the 

variability and complexity of a task, the more prone it is to automation. 

Traditionally, K-12 classrooms have been described as exhibiting the high degrees of 

variability and unpredictability that characterize complex environments, meaning that they are a 

poor fit for mechanization (Bidwell, 1965; Corno, 2008; Fullan, 1996). Some technology 

advocates suggest that recent advances in the technologies for assessing students, analyzing data, 

and delivering instruction offer the potential to change this calculus, allowing some of teachers’ 

traditional tasks to be re-classified as “simple” rather than “complex,” thus enabling automation 

(Arnett, 2016). For example, giving students’ feedback on procedural math skills like 

multiplication fluency does fit neatly in Van de Ven & Delbecq’s description of a simple task 

that “[possesses] a known procedure that specifies the sequence of steps to be followed in 

performing the task],” (p.183) suggesting that shifting this type of instruction from human-based 

to technology-based systems could improve efficiency. However, it remains unclear what 

percentage of teachers’ work might fall within this category, or how schools of education, labor 

unions, or the public might resist such a radical reconception of the role of a teacher (TNTP, 

2014). In addition, there is some evidence that technology-based learning models serve to make 

instruction more didactic and procedural, which may not be conducive to teaching the broad set 

of complex cognitive and social skills required for success in the 21st Century (Murphy et al., 

2014a; Wenglinsky, 2005).  

Institutional isomorphism. An additional constraining force on instructional reform is 

isomorphic pressure to retain the forms and practices of the broader institutional environment 

(DiMaggio & Powell, 1983). Isomorphism encourages organizations to adopt practices not 

because of their technical efficiency, but instead because they provide legitimacy in the eyes of 
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powerful stakeholders (Meyer & Rowan 1977, 1978). Typically these stakeholders rest outside 

the organization itself and encourage conformity with preexisting structures and norms. The 

result is that each unit in an environment, such as a school in a district or a district in a state, 

comes to resemble all other units, regardless of the technical efficiency of the dominant 

organizational processes. 

Isomorphic pressure can take several forms. The most direct of these is coercive 

isomorphism, which is produced by direct pressure such as a government mandate or conditional 

revenue. For example, criterion-based, state-mandated assessments of student achievement may 

be interpreted as a form of coercive isomorphism, since they threaten schools with sanctions or 

closure if they do not prepare students to express their knowledge of specific content in a 

mandated format (Hyslop & Mead, 2015). The high-stakes nature of these tests may discourage 

educators from teaching higher- or lower-level skills that will not appear on state tests, even 

when those skills are within the zone of proximal development for individual students. Indeed, a 

survey of 62 public charter and district schools implementing technology-based models indicated 

that students’ ability to work at their own pace was limited by a perceived need to emphasize 

grade-level content and prepare for standardized tests (Pane et al., 2015, 2017). Although a new 

generation of technology-based assessments such as the SMARTER Balanced and PARCC 

assessments offer the possibility of assessing a broader range of skills, and the recently passed 

Every Student Succeeds Act (ESSA)’s loosening of federal control over state-level assessment 

and accountability provides space for further innovation, the majority of state accountability 

systems still rely only on assessments of grade-level standards (Clarke-Midura & Dede, 2010; 

Klein, 2016). These high-stakes assessments, and the normative rewards and sanctions associated 
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with them, represent a powerful form of coercive isomorphism that constrains schools to familiar 

forms such as age-grade cohorts and standardized instruction. 

Organizations can also be influenced by normative isomorphism in which the 

individuality of units is constrained not through direct pressure, but instead through the 

imposition of professional and organizational norms. These norms are often transmitted through 

professional associations, certification requirements, and popular conceptions of strong or 

appropriate practice (DiMaggio & Powell, 1983). Normative isomorphism is particularly 

relevant for instructional models that attempt to leverage technology-based personalization to 

rethink the role of the teacher. While reformers may be excited for the increased efficiency 

produced by asking lower-paid aides or paraprofessionals to supervise students learning directly 

from technology, parents and the public may be strongly attached to the popular conception of 

students being taught by certified and experienced teachers. This may be true even if non-

certified teachers were demonstrated to produce equivalent student learning gains when 

supervising a technology-based model; the popular conception of the teacher as the dominant 

mediator and mastermind of the learning process holds a symbolic resonance that may be 

difficult to dislodge. 

A recent RAND study paints a vivid picture of these isomorphic forces in forty schools 

attempting to implement personalized learning programs (Pane et al., 2017). These schools 

reported that their most significant barriers in implementing technology-based personalization 

included the difficulty of explaining competency-based grading systems to parents and who were 

accustomed to traditional A-F grades. Most schools were actually forced to convert their 

competency-based grades into A-F scores for state-level reporting and college applications, a 

powerful example of isomorphic pressure forcing a reversion to traditional practices. The study 
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also found that charter schools tended to display more extensive implementation of many aspects 

of personalized learning, while traditional district schools tended to look more similar to the 

national sample of schools. This finding is not surprising, given charter schools’ independence 

from many of the bureaucratic, regulatory, and union-related pressures that constrain district 

schools (Huerta & Zuckerman, 2009). 

Isomorphic pressures are strongest in fields in which goals and technologies are 

ambiguous, organizations are highly dependent upon limited sources for resources, and there are 

powerful professional organizations: all apt descriptors of the field of education. In particular, 

the difficulty of setting and measuring meaningful educational goals encourages the adoption of 

symbolic rather than technical indicators of success, further encouraging isomorphism. Hess 

(1999) outlines several root causes for the difficulty of measuring goals in urban school districts, 

including: (a) heterogeneous student groups; (b) lack of universal, widely accepted assessments 

of learning; (c) disagreement over purpose of schooling; (d) rapid leadership turnover; and (e) 

social dysfunctions in urban areas that make it hard to disentangle the effects of school quality 

and poverty. These factors all inhibit educators’ ability to reform and improve the technical core. 

Buffering, symbolic adoption, and street-level bureaucracy. Schools and teachers 

adopt a variety of strategies to protect themselves in the face of multiple, competing demands 

and a constant churn of symbolic reform. These rarely include outright defiance, which is 

politically dangerous and may result in restricted access to valuable resources. Much more 

common is a practice of buffering, or strategically engaging with external demands in limited 

ways (Honig & Hatch, 2004; Tyack & Cuban, 1995). This can include limiting interactions with 

reform agents, ignoring negative feedback, or negotiating to shape the terms of compliance. 

Similarly, actors may choose to add peripheral structures without altering the technical core of 
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teaching and learning (Meyer & Rowan, 1977; 1978). For example, when tasked with reducing 

achievement gaps or promoting racial integration, districts may choose to create Offices of Civil 

Rights or hire Chief Diversity Officers, powerful symbols of compliance. However, these actions 

are likely to have little or no direct effect on the technical core of instruction. In another 

example, a recent study on the effects of high school graduation credit requirement reforms 

found that schools responded to higher standards by changing their criteria for awarding 

diplomas, but then awarding diplomas to a higher number of students who did not meet the 

requirements. They symbolically adopted the reform by implementing the new mandate, but 

failed to meaningfully change their practice at the student level (Carlson & Planty, 2012). 

A wide body of research literature demonstrates the prevalence of cooption, symbolic 

compliance, and non-compliance in the loosely coupled world of education policy (Cohen, 1990; 

Cohen & Barnes, 1993; Elmore, 1996; McLaughlin, 1987; Spillane, Reiser, & Reimer, 2002; 

Weick, 1976). In the words of Richard Elmore (1996), “The closer an innovation gets to the core 

of schooling, the less likely it is that it will influence teaching and learning on a large scale… 

innovations that are distant from the core will be more readily adopted.” This supposition is 

aligned with a separate literature on street-level bureaucracy and institutional innovation, which 

describes how service workers with substantial discretion over the execution of their work, such 

as teachers, police officers, and health workers, frequently buffer or ignore top-down directives 

(Lipsky, 1971; Lipsky, 1980; Weatherly & Lipsky, 1977). This is particularly true when these 

street-level bureaucrats are faced with inadequate resources, frequent challenges to authority 

from involuntary clients, and contradictory or ambiguous goals and expectations. This literature 

suggests that teachers tasked with implementing technology-based personalization may adopt it 

superficially or symbolically while continuing to engage their traditional teaching methods and 
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waiting for reformist policymakers to be replaced or lose interest. In words that could easily be 

applied to today’s schools, a New York teacher from the 1930s expressed her fatigue with the 

seemingly endless cycle of symbolic reform: “Last year it was the socialized recitation, or the 

Gary Plan, or dramatization or correlation; this year it is motivation, silent reading, or the Dalton 

Plan. Each is taken up in turn, indiscriminately adopted, presently elbowed out to make room for 

the next newcomer; and yet we are not saved. The old problems remain” (Tyack & Cuban, 

1995). 

Description of the Reform Studied in this Dissertation: TBPP 

 TBPP is one of the most prominent new models attempting to reform the instructional 

core through technology-based personalization that redesigns classroom instruction in an attempt 

to match each student with the specific content that will best support his or her academic growth. 

The key design features of the program have remained largely consistent since its inception in 

the late 2000s. The learning environment is reorganized into one large room containing between 

four and eight adult instructors and approximately 100 students, frequently including students 

from multiple grade levels. Upon entering the room, students open personal laptop computers, 

log into the TBPP online portal, and consult their personal “learning lists,” which tell them what 

they will be learning that day and how they will learn it. At the end of each day, students take a 

short, multiple choice “exit slip” to determine their mastery of that day’s content. The program 

then uses the exit slip results to update the student’s individual learner profile and to determine 

each student’s assignment for the next day. 

 A TBPP lesson is designed to take a student approximately 35 minutes to complete. 

Students experience two lessons back to back each day, typically addressing the same skill, 

followed by the day’s exit slip, which they have ten minutes to complete. Lessons are grouped 
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into “rounds” that last between two and three weeks before culminating in a “learning list wrap-

up” assessment that evaluates the student’s mastery of the five to seven skills assigned to him or 

her for that round. If students exit slips and learning list demo demonstrate that they have 

mastered the content assigned to them for that round, they will be assigned more advanced 

content for the next round. If a student does not master a particular skill, he or she will typically 

be assigned to continue working on that skill in a subsequent round. 

 Each thirty-five minute TBPP lesson utilizes one of seven different instructional methods. 

In the Online Instruction (OI) and Online Practice (OP) methods, students work independently 

on digital content that they access through the online TBPP portal on their personal laptops. OI 

introduces students to new content, whereas OP provides practice opportunities with content to 

which students have already been introduced. The Paper Practice (PP) method also sees students 

working independently using either online or traditional paper/pencil content. In the Large Group 

(LG) and Small Group (SG) methods, students work in groups of two to six to solve 

mathematical problems addressing a shared skill. Students in the OI, OP, PP, LG, and SG 

methods are supervised by adults as they work, but these adults could be either certified math 

teachers (CMTs) or Teacher Assistants (TAs), who are not certified to teach math. The Teacher 

Instruction (TI) method is most similar to typical instruction, with CMTs guiding groups of six to 

thirty students through a shared mathematical concept. Finally, in the Long Term Projects (LTP) 

method, students work with the same peer group and CMT over multiple sessions to solve a 

complex, real-world problem. This day-to-day consistency makes the LTP method different than 

all other methods in which new groups are generated dynamically each day. The TBPP algorithm 

intentionally assigns each student to a balance of methods, and at any given time, different 

students in the TBPP classroom will be simultaneously utilizing each of these methods. This 
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means that a typical TBPP classroom will simultaneously feature some students learning 

independently using the OI, OP, or IR method, some students working in small groups in the LG 

or SG method, and some students learning from teachers in the TI or LTP method. 

Although the TBPP program is designed only for students in Grades 5-8, the skills 

available for instruction include content ranging from early elementary school to Algebra. The 

skills map itself was created by TBPP staff, and has not to my knowledge been validated by 

outside researchers or content experts. Many of TBPP’s curricular materials have been sourced 

from established content providers and software publishers, while others have been created 

entirely by TBPP staff. However, although TBPP provides instructional resources to use for all 

methods, teachers are allowed to customize them or use different materials of their own design if 

they choose.  

 Typical student and teacher experience. A typical student – we will call him Joseph – 

begins his daily TBPP experience by walking into a large, open learning space that is 

approximately the size of four traditional classrooms. Upon entering the learning space, Joseph 

will retrieve his personal laptop, log onto the TBPP portal, and check his personal schedule for 

the day. This schedule will be composed of two lessons, each utilizing a separate instructional 

method. For example, Joseph may have been introduced to the skill of multiplying decimals 

yesterday in a TI, but did not demonstrate mastery on yesterday’s exit slip. As a result, the TBPP 

algorithm today assigns him to spend thirty-five minutes practicing decimal multiplication in an 

LG with four other students who also need to master this skill, then assigns him to a PP where he 

will work on the skill independently using online content from Pearson that he accesses via his 

computer. After seventy minutes, Joseph opens his personalized exit slip through the TBPP 

portal and attempts to answer five multiple choice questions on multiplying decimals. Joseph is 
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delighted to see that he has gotten four out of the five questions correct, which TBPP interprets 

as indicating mastery. Joseph logs off and closes his computer, knowing that he is now ready to 

move on to the more complex skills, such as dividing decimals, that TBPP will present to him in 

the next round. Figure 2 below provides an overview of Joseph’s schedule on the typical day that 

I just described. 

 

Figure 2: Sample Student Daily Schedule 

Joseph Johnson 
8th Grade 
Tuesday 
 
Concept: 
Understanding Percents: parts per 100 
 
Target Skill: 
Multiplying decimals 
 
Session 1 
Large Group (LG) 
 

9:10am 

Session 2 
Paper Practice (PP) 
 

9:45am 

Exit Slip 
Exit slip 
 

10:20am 

Joseph leaves for his next class 
 

10:30am 

 

We can also understand the program through the eyes of a typical teacher - call her Ms. 

Jackson – who begins her daily TBPP experience the afternoon before instruction is scheduled to 

occur. At 4pm she opens her computer, logs onto the TBPP portal, and examines her schedule 
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for the next day (it is worth noting that since the next day’s instructional assignments are based 

in part on the current day’s results, it is impossible for her to begin preparing until today’s exit 

slips are completed). Each day, Ms. Jackson teaches two separate eighty-minute periods; she has 

seventh and eighth grade students in the morning, then fifth and sixth grade students in the 

afternoon. Through the portal, she sees that her morning period will begin with a TI on adding 

fractions at 9:10am, then continue with an LG at 9:45am. For each lesson, she is able to see the 

individual students she will be teaching, as well as their assessment history, including how many 

lessons they have each previously experienced on the skills she’ll be teaching. She is also able to 

download a lesson plan and related instructional materials to help her teach the skill. Because 

Ms. Jackson is a veteran teacher, she chooses to reuse one of her old lesson plans to teach the TI, 

but she likes the materials that TBPP provides for the LG, so she prints a set to use with her 

students the next morning.  

At 9:10am, Ms. Jackson stands at the door to greet students as they enter the learning 

space. She quickly takes attendance, then moves to the section of the room where she will be 

teaching her TI. As she teaches her lesson, a nearby group of seventh and eighth grade students 

works on Algebra content in a SG station, while another group of students, headphones perched 

atop their heads, works independently in a OI station while supervised by a TA. After the TI 

ends, Ms. Jackson transitions to a separate part of the room, where she supervises a new group of 

students as they work together in an LG. She spends the period circulating from student to 

student, keeping them each on task and addressing misconceptions. As she circulates, she also 

uses her laptop to assign each student grades for “participation” and “effort;” these low-stakes 

grades do not affect their progress through TBPP skills, but can be reflected on the report cards 
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that go home to parents. At 10:20am, she urges students to wrap up their work and begin their 

exit slips, and at 10:30am she sends them out the door and on to their next classes. 

TBPP as an attempt to reform the instructional core. The TBPP model diverges from 

the traditional technology of schooling in several significant ways, including the role of teachers 

and students, the design of the physical space, the assignment of instructional content, and 

teachers’ decision-making latitude.  

Chart 1: Traditional Technology of Schooling vs. TBPP Model 
Technical 
Element 

Traditional Technology TBPP Model 

Role of teachers 
and students 

Teachers are active presenters of 
knowledge and students are passive 
recipients. 

Students learn from teachers, computers, 
and each other.  

Teachers use formal and informal 
assessment to understand each student’s 
progress. 

Exit slips and the TBPP portal give 
teachers and students a shared 
understanding of progress.   

Isolated teachers work with a fixed group 
of twenty to thirty students for a full 
year. 

Teams of teachers share responsibility 
for the learning of approximately 100 
students. Teachers work with unique 
subgroups each day. 

Physical space One teacher commands a space filled 
with between twenty and thirty students. 
Students are typically oriented towards 
the “front” of the room.  
 

Multiple teachers share a common space 
filled with approximately one hundred 
students. Space is flexible and dynamic. 

Instructional 
content 

All students in the class study the same 
content at the same time.  

Students typically work on different 
content than one another and can move 
at different paces through the content 
depending on how quickly they achieve 
mastery. 

Teacher 
decision-
making 

High levels of teacher discretion on how 
to group students and deliver instruction. 

Automated algorithms determine what 
content to deliver, how to group 
students, and how to deliver instruction 
for the OI, OP, and PP methods.  

 



 

 48 

 TBPP embodies all four of the elements included in the Gates Foundation “working 

definition” of personalized learning: (1) individual learner profiles; (2) personal learning paths; 

(3) competency-based progression, and (4) flexible learning environments. However, it is also 

important to note what the program does not do. For example, it does not use data to evaluate 

which methods might be most effective for each student, as might be suggested by Gardner 

(2011). Instead, method assignments are motivated by the desire to expose all students equally to 

all methods, as well as logistical convenience given how many students in a classroom need to 

work on each skill in a given day. Similarly, TBPP does not collect or use data on which students 

have been more or less successful on exit slips when they worked in a group together in the past. 

Finally, once a skill is assigned, TBPP does not provide more scaffolding for less able learners or 

less scaffolding for more capable learners, as recommended by Snow & Swanson (1992); the 

instructional content for a given skill is the same for all students.  

 Although TBPP is an archetypal example of the kind of technology-based personalization 

envisioned by the Gates Foundation, the design of the program encompasses several decisions 

and assumptions that are not necessarily inherent to the use of instructional technology in general 

(Scardamalia & Bereiter, 2001). First, the design of the OI and OP methods represents a 

deliberate choice to use technology to deliver instruction in short, discrete bursts rather than to 

facilitate long-term investigation of authentic real-world problems (while the LTP method does 

address authentic, real-world problems, that method is facilitated by teachers, not technology). 

Second, TBPP’s use of technology as its primary mechanism for assessing student understanding 

means that the program is limited to evaluating the narrow range of skills and knowledge that 

technology can assess without human support. In particular, the short, multiple-choice format of 

exit slips means that they are more likely to consider basic procedural skills than complex skills 
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related to theoretical understanding or evaluation. In combination, these decisions about where 

and how to leverage technology may serve to make TBPP instruction narrower and more didactic 

than traditional classroom instruction. Indeed, there is evidence that similarly designed 

technology-based models have had precisely this effect (Murphy et al., 2014a; Wenglinsky, 

2005). 

 The design of TBPP’s proprietary skill network and algorithm also reflects specific 

epistemological choices about the nature of learning and knowledge. For example, it assumes 

that learning occurs through identifiable pathways, and that linear and dependent relationships 

can be drawn from one skill to another. Similarly, it assumes knowledge to be binary, and that 

students can be categorized according to whether or not they have mastered individual, discrete 

mathematical skills. The skill network and algorithm encompass neither the possibility of partial 

mastery nor the idea that knowledge may be context-dependent; instead, a student is assumed to 

have either mastered a skill or not with no room for additional nuance. 

Finally, it is worth highlighting the intentional design choice for the TBPP algorithm to 

personalize instructional assessments based entirely on the assumed levels of mastery within the 

skills network. The algorithm does not attempt to match students to methods in which they have 

been more successful in the past, nor does it pair them with teachers or peers with whom they 

have experienced past success. Indeed, the program’s creators intentionally designed the 

algorithm to provide all students an equitable span of experiences across methods, teachers, and 

peers. However, these built-in program features mean that the algorithm does not automatically 

“learn” or improve its instructional assignments over time, other than to adjust to students’ 

dynamic positions in the skill network. TBPP is designed to personalize based only on students’ 
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individual content mastery, not their preferred learning method, teacher, peer group, or any other 

instructional element. 
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4. Data and Research Methods 

Description of Data 

This study leverages a diverse set of quantitative data from five public K-8 schools in a 

mid-size urban district during the 2015-16 academic year, when all five schools were in the first 

year of implementation of the TBPP program. I have combined data from two sources: (a) daily 

programmatic data collected by the non-profit that manages TBPP, including detailed daily 

lesson assignments and exit slip scores for all students participating in the program within the 

five schools; and (b) students’ demographic data and scores on the Fall 2015 MAP assessment, 

Spring 2016 MAP assessment, and state-mandated PARCC math assessments from Spring 2016. 

This study was completed in conjunction with a larger, four-year study which explores 

TBPP’s causal impact on student mathematics performance and analyzes TBPP’s 

implementation processes. The demographic data, MAP results, and PARCC results were 

collected by the research team for the larger project, of which I was a member. However, the 

inclusion of daily programmatic data is unique to my study. 

Daily programmatic data. One of the embedded features of the TBPP program is the 

ability to collect detailed daily programmatic data. These data include linked lessons and exit 

slips for each student at a daily level, allowing me to associate specific instructional experiences 

with student outcomes. The daily lesson data is highly detailed, including information on the 

method, content, teacher, curricular materials, date, and time of day. Exit slips are multiple-

choice format and machine-scored. The vast majority of exit slips contain five questions, but 

some contain four or six questions. A student must answer at least 75% of questions correctly in 

order to “pass” and advance in his or her TBPP skills progression. 

The questions on each exit slip are drawn from a library of content-specific items written 
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by content experts in the employ of the non-profit organization that produces TBPP. This non-

profit organization claims to test the validity and reliability of these items themselves using 

rigorous and mathematically sound procedures. However, I did not have access to detailed 

descriptions of the process that they use for validating their items, nor did I have access to the 

item-level data that I would need to test the validity and reliability of the items myself. 

Accordingly, while this study assumes that the exit slip assessments are psychometrically valid, I 

was unable to conclusively determine that this is the case.  

In 2015-16, TBPP recorded data for 247,560 instructional events and 170,075 linked exit 

slips from 1,238 unique students and 48 teachers across the five schools participating in this 

study. These 170,075 linked exit slips reflect double counting of exit slips on days in which 

back-to-back instructional events for a single student addressed a common skill; only 123,776 

unique exit slips were actually administered. The instructional events included seven distinct 

methods, with the role of the teacher varying depending on the method. In independent methods 

such as Online Instruction (OI), Online Practice (OP), and Paper Practice (PP), the role of the 

teacher is to ensure students remain on task and to support individual students with content as 

needed. In collaborative methods such as Large Group (LG) and Small Group (SG), the role of 

the teacher is to act as a guide and facilitator of student-led groups. Adult-led methods such as 

Teacher Instruction (TI) and Long Term Projects (LTP) are similar to traditional classroom 

instruction in which a teacher organizes instruction, delivers new content, actively checks for 

understanding, responds to student misunderstanding, and facilitates guided and Paper Practice.  

Two types of teachers participate in TBPP: certified math teachers (CMTs) and Teacher 

Assistants (TAs) who are not certified to teach math. These TAs may include special education 

teachers, English as a second language specialists, or teachers certified in other content areas, 
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such as social studies. My models utilize a dummy variable to indicate whether teachers are 

CMTs or TAs (CMT=1, TA=0). While CMTs were assigned to oversee all instructional 

methods, TAs were only assigned to OI, OP, PP, LG, and SG methods (i.e. not TI or LTP 

methods). 27 CMTs and 21 TAs delivered instruction in the five schools included in this study. 

Because the grade-level of a skill assigned for instruction can be either above, on, or 

below the typical grade level of a student, I generated an additional variable to reflect the 

difference between the grade level of the instructional content and the grade level of the student 

engaged in instruction. For example, lessons delivered to a 6th grade student featuring 4th, 5th, or 

6th grade content would be coded as -2, -1, or 0, respectively. I also employed a series of 

dummy-coded variables in my analyses to reflect the method of instruction (OP, PP, LG, SG, 

LTP, and TI compared to OI). Table 1 below reflects the total number of instructional events for 

each method, as well as total number of linked exit slips (see Missing Data section below for 

discussion of the gap between instructional events and exit slips). 

Table 1: Instructional Events and Exit Slips per Method 

 

Instructional Events 
(n=247,560) 

Exit Slips 
(n=170,075) 

Independent-Led Methods   
Online Instruction (OI) 61,211 51,809 
Online Practice (OP) 31,154 26,104 
Paper Practice (PP) 31,675 26,172 
   

Student-Led Methods   
Large Group (LG) 12,975 11,132 
Small Group (SG) 
 

18,729 15,305 

Adult-Led Methods   
Teacher Instruction (TI) 38,636 32,567 
Long Term Projects (LTP) 53,180 6,986 

 

TBPP organizes students into within-school classes that participate in instruction at the 
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same time and in the same location. These classes include all of a school’s students in one or 

more grade levels, meaning that they are far larger than a traditional class; in the five schools 

included in this study, class size ranged from 82 to 128, with a median of 107.5. Each of these 

classes is typically served by between four and eight adults, with one adult assigned to teach or 

supervise the discrete learning tasks occurring in each section of the room. This means that 

although the class sizes are significantly larger than in a traditional model, teacher to student 

ratios are roughly similar. 

Demographic data, MAP results, and PARCC results. The district’s student 

population is predominantly low-income and black and/or Hispanic, and the demographics of the 

five schools under study are representative of the district as a whole. I employ a series of 

dummy-coded measures to account for students’ demographic characteristics in my analyses, 

including indicators for gender (female=1, male=0), limited English proficiency (LEP) and 

special education (SPED) status (yes=1, no=0), separate indicators of free- and reduced-price 

lunch status (yes=1, no=0, compared to fully paid lunch status), grade (fifth, sixth, and eighth, 

compared to seventh), and race/ethnicity (black, Hispanic, and Asian/Pacific Islander students, 

compared to whites).  

My data also include the Spring 2016 PARCC score and the Fall and Spring MAP scores 

from the 2015-16 academic year. The PARCC (Partnership for Assessment of Readiness for 

College and Careers) assessment is administered annually in compliance with federal testing 

mandates by a consortium of eight states and the District of Columbia. The assessment is aligned 

to the Common Core State Standards and is given to all students in grades 3 through 8 in both 

ELA and math. PARCC is criterion-based, meaning that all students are assessed using a 

common set of grade-level questions; their responses to those questions are used to place them in 
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one of five performance levels, with the top two levels representing proficiency. 

The MAP (Measures of Academic Progress) assessment is produced by the Northwest 

Evaluation Association (NWEA), a national organization that provides assessments, professional 

development, and research for schools. The MAP assessment is available in ELA and Math for 

students in grades K through 11. In contrast to the PARCC exam, the MAP assessment utilizes a 

Rasch measurement model, meaning that students are measured on a continuous scale ranging 

from kindergarten to the high school level skills. The MAP assessment is also computer-

adaptive, meaning that it differentiates the questions presented to each student depending on how 

that student performed on earlier questions. For this study, I z-scored (standardized) MAP scores 

within each grade, allowing “apples to apples” comparison of MAP data across multiple grade 

levels (Howell, 2002).  

Missing Data 

I am fortunate to have complete data on all independent variables, including students’ 

demographic data and the daily instructional assignment for each student. The completeness of 

the instructional data is a product of the TBPP model itself, since it naturally creates a complete 

record of the instructional experience for each student every day as a byproduct of designing and 

assigning that experience. 

However, while my dataset contains complete information on all independent variables, 

some instructional events lack data for the dependent, exit slip variable. The most prominent 

reason for missing exit slip data is related to the unique design of the LTP method. Unlike most 

methods, which are discrete, one-day instructional events, the LTP method engages students in a 

complex, real-world task that takes multiple days to complete. Because these LTPs unfold over 

more than a week, TBPP only assigns an exit slip for approximately one in seven LTP lessons 
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(usually on day two or three of the task). Accordingly, I removed from my analytic sample the 

46,194 LTP lessons that are not paired with exit slips, leaving a total of 201,366 instructional 

events and 170,075 exit slips linked to 1,238 students and 48 teachers. After removing the LTP 

lessons without exit slips, 6,986 LTP lessons remained in the dataset. Because this omission is 

due to the design of the TBPP model, rather than missing data that should have been included in 

the data file but is absent, it does not raise any serious analytic or conceptual concerns. 

After the unmatched LTP lessons were removed, 31,291 of the remaining 201,366 

instructional events lacked corresponding exit slip data. There are several reasons why an 

instructional event could lack a linked exit slip, including timing issues (i.e. student runs out of 

time to complete the exit slip), technology issues, behavior issues, a fire drill, or a partial 

absence/early pickup. Given that the reasons for a missed exit slip are many and unknowable, the 

exclusion of these exit slips is unlikely to bias the analytic outcomes, and the direction of any 

potential bias is uncertain. However, I tested for the possibility of bias by calculating for each 

student a “percent of exit slips missing” variable, then using ordinary least squares regression 

(OLS) to search for relationships between student-level exit slip completion and any measured 

student characteristic, including school, grade level, gender, race/ethnicity, free- and reduced-

price lunch status, limited English proficiency, special education status, and Fall 2015 MAP 

score. Tables 2 below indicates statistically significant relationships between the percentage of 

exit slips complete per student and that student’s school and grade, with effect sizes ranging from 

-.072*** at School 3 to .050*** at School 2 (I used School 1 and Grade 7 as reference 

categories). While these differences are meaningful, the lack of variance in exit slip score across 

schools and grades means that they are unlikely to significantly bias the results. There are also 

statistically significant relationships between exit slip completion and several other time-
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invariant demographic indicators in Model 3, but these relationships are explained away when 

MAP scores are included in Model 4. 

 

Table 2: Predictors of Exit Slip Completion Per Student 
 Model 1 Model 2 Model 3 Model 4 
School 2a .081*** .083*** .080*** .050*** 
School 3 -.047** -.046** -.034* -.072*** 
School 4 .069*** .071*** .074*** .047*** 
School 5 -.001 .001 -.006 -.022* 
Grade 5b  -.011 -.010 -.026* 
Grade 6  .005 .005 -.019* 
Grade 8  -.022~ -.024* -.034*** 
Femalec   -.011 -.004 
Blackd   -.008 .005 
Hispanic   .007 .005 
Asian   -.089* .042 
Free lunche   .030* -.002 
Reduced lunch   .013 .013 
LEPf   -.039** .003 
SPEDg   -.040** -.019 
Fall MAP Mathh    .008 
R-squared .086 .091 .114 .194 
~p<.10 
* p<.05 
** p<.01 
***p<.001 
 
a School 1 is used as a reference category 
b Grade 7 is used as a reference category 
c Male is used as a reference category  

d White is used as a reference category 
e Paid lunch is used as a reference category 
f Not limited English proficiency is used as a reference category 
g Not special education is used as a reference category  

h MAP scores are standardized (z-scored) within each grade level 
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Table 3: Exit Slip Completion Per Student Per School 
 Students Mean Standard Deviation Min Max 
School 1 267 .796 .217 0 .967 
School 2 230 .878 .085 0 .970 
School 3 220 .749 .127 0 .904 
School 4 243 .865 .128 .064 .988 
School 5 278 .795 .156 0 .922 
 

 

Table 4: Exit Slip Completion Per Student Per Grade 
 Students Mean Standard Deviation Min Max 
Grade 5 175 .829 .141 0 .972 
Grade 6 361 .826 .141 0 .988 
Grade 7 357 .823 .176 0 .971 
Grade 8 345 .796 .164 0 .950 
 

I also generated basic summary statistics to explore whether the exit slip completion rate 

varied across methods, teacher types, or content levels. Table 5 indicates that across the six non- 

LTP TBPP methods, exit slip completeness ranged from 82% to 86% (LTP completeness in the 

dataset was 100%, since LTP lessons without exit slips had been previously excluded). Across 

the two teacher types, exit slip completeness ranged from 84% to 86%, and across the six 

potential content levels, exit slip completeness ranged from 80% to 86%. Exit slips were slightly 

more likely to be complete for lessons on or below a student’s grade level than for lessons above 

a student’s grade level. However, these associations are small enough in magnitude that they are 

unlikely to be large enough to significantly bias the results. 

 

 

 

 

 



 

 59 

Table 5: Percentage of Exit Slips Complete by Method, Teacher Type, and Content Level  

 

Instructional Events Exit Slips Exit Slip 
Completeness 

Method    
Online Instruction (OI) 61,211 51,809 85% 
Online Practice (OP) 31,154 26,104 84% 
Large Group (LG) 12,975 11,132 86% 
Small Group (SG) 18,729 15,305 82% 
Teacher Instruction (TI) 38,636 32,567 84% 
Long Term Projects (LTP) 6,986 6,986 100% 
Paper Practice (PP) 31,675 26,172 83% 

    
Teacher Type    

Certified Math Teacher (CMT) 66,221 56,669 86% 
Teacher Assistant (TA) 135,145 113,406 84% 
    

Content Gap    
Three grades below student (-3) 7,530 6,464 86% 
Two grades below student (-2) 28,929 24,209 86% 

    One grade below student (-1) 44,907 38,784 86% 
At student’s grade level (0) 83,500 71,196 85% 
One grade above student (+1) 31,052 24,894 80% 
Two grades above student (+2) 597 487 82% 

 

Finally, I evaluated the percentage of lessons with completed exit slips per student (see 

Chart 2 in the Appendix). This analysis revealed that 45 students, representing 3.6% of the total 

number of students, completed fewer than 50% of their exit slips. I chose to eliminate these 45 

students and their associated 1,085 lessons and 329 exit slips from the dataset. Among these 

students, the median number of lessons was 9, indicating that most participated in TBPP for less 

than one week. The relatively low number of eliminated students and lessons should reduce the 

likelihood of analytic concerns. After removing these 45 students, the final analytic dataset 

contained 200,281 instructional events and 169,746 exit slips linked to 1,193 students and 48 

teachers.  



 

 60 

Of the 169,746 total instructional events, 92,414 are “paired” lessons, meaning that they 

occur back to back on the same day with another lesson addressing the same instructional 

content. An additional 77,332 of the instructional events are “stand-alone” lessons, meaning that 

they are the only instructional event paired with a particular exit slip. As with the LTP issue 

described in the Missing Data section above, the presence of stand-alone lessons is a feature of 

the TBPP model rather than a case of problematic missing lesson data. Stand-alone lessons are 

produced when students are assigned to spend half of the TBPP period engaged in a LTP lesson 

or meeting with their “homeroom” group, both of which occur relatively frequently. 

Tests for Normality of Data 

I generated histograms to evaluate the normality of my outcome variable (standardized 

exit slip score) and each of my continuous predictor variables (average group MAP score, 

content gap of instruction, standardized student MAP score, and centered group size). This 

analysis indicated that the data were normally distributed (see Charts 4 through 9 in the 

Appendix). This is particularly important in the case of the outcome variable, where the 

distribution reveals enough variance to be able to conduct meaningful analyses; had almost all 

students earned the same exit slip score each day, it would have been very difficult to draw 

meaningful conclusions about the relationship between the time-variant instructional variables 

and daily learning outcomes. The distribution of group sizes is slightly non-normal, but the data 

is close enough to normal to allow for meaningful analysis and interpretation. 

 I also evaluated the distribution of methods within each skill. Were easier or more 

difficult skills taught using some but not all methods, it could have biased the estimates obtained 

in my quantitative analyses. In Table 6 below, each row represents a discrete skill, and each 

column represents a method. The cells are populated with the total number of lessons within the 
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dataset that utilized that skill and method. Finally, I transformed the table into a heatmap by 

assigning each cell a color based on the number of lessons it represents; cells with fewer lessons 

are colored red, and cells with more lessons are colored green.  

Table 6 demonstrates sufficient variability of instructional methods within each skill to 

obtain meaningful results from quantitative analysis. This is true at all grade levels. This analysis 

also suggests several other interesting features of the data. First, it reveals the normality of the 

distribution by content level, with more lessons delivered for skills falling in Grades 5, 6, and 7 

of the TBPP’s proprietary skills map then above or below those grades. Second, it reveals that at 

least one OI lesson was used to teach every single skill, with every other method assigned to only 

address a subset of the total pool of skills. Finally, it indicates that LTP lessons in particular are 

not evenly distributed across all skills; only 27% of the 288 total skills have at least one 

associated LTP lesson, compared to between 80% and 100% for the other six methods. Because 

LTP lessons are time-intensive to teach and labor-intensive to create, it is likely that LTP lessons 

have been assigned to only the most important, foundational, or high-leverage skills.  
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Table 6: Distribution of Instructional Methods within Skills 
 

 

Skill      OI      OP    LG     PP    TI       SG   LTP      
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Skill      OI      OP    LG     PP    TI       SG   LTP      
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Skill      OI      OP  LG     PP    TI     SG   LTP      
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Skill      OI      OP    LG     PP    TI       SG   LTP      
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Quantitative Methods 

I used two primary quantitative techniques to explore my research questions. The first is 

a hierarchical linear model (HLM) that nests lessons within students (Raudenbush & Bryk, 2002; 

Woltman et al., 2012). The second is hierarchical cluster analysis paired with clustergram 

heatmap data visualizations (Bowers, 2007, 2010; Eisen at al. 1998; Lee, et al., 2016; van’tVeer, 

2002). 

Overview of hierarchical linear modeling (HLM). Hierarchical linear modeling is a 

statistical technique for examining the relationships among cases that exist in nested structures. 

For example, a study of voting behavior may focus on voters in different states. In this case, 

there are two levels of analysis – votes and states – with the first voter level nested within the 

second state level. In an educational context, researchers may seek to explore the relationships 

between several curricula and the mathematics achievement of students nested within 

classrooms, which are in turn nested within schools. These types of nested structures are 

relatively common in social science research (Raudenbush & Bryk, 2002; Means et al., 2010; 

Murphy et al, 2014a; Ready & Wright, 2011; Singer & Willett, 2003; Woltman et al., 2012; 

Wood et al., 2017). 

The use of a multi-level model offers several advantages for this study. First, it enabled 

me to explore the proportion of variance in student outcomes at the lesson, student, class, and 

school levels, directly addressing my research question as to what degree variation in TBPP’s 

daily program implementation is related to variation in student outcomes. Second, it provided 

more accurate standard errors than traditional OLS, which would erroneously assume 

independent responses across lessons without taking into account covariance based on student 

characteristics, class-level factors, or school-level factors. Third, it allowed me to model the 
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effect of time, which is important in a dataset with multiple longitudinal data points for each 

participant. Finally, it enabled me to model cross-level effects and explore whether the 

relationship between lesson-level variables and student outcomes differs based on the types of 

students engaged in instruction (Raudenbush & Bryk, 2002; Singer & Willett, 2003; Woltman et 

al., 2012). 

Fitting the model. I utilized a two-level hierarchical linear model to explore the 

relationships between various elements of the TBPP model and students’ outcomes, as measured 

by standardized (z-scored) daily exit slips. My model utilized adaptive centering with random 

effects (Raudenbush, 2009). This means that lesson-level effects are group-mean centered within 

students, and that each student’s daily instructional data is compared to the average of his or her 

data over the course of the year. This approach is particularly useful when exploring a program 

such as TBPP which features complex interdependencies among students’ academic performance 

and the nature of the instruction assigned to them each day.  

Although I initially intended to utilize a four-level model that nested instructional events 

within students within classes within schools, when I fit a one-way random-affects ANOVA 

model to partition the variance in exit slip scores, it revealed that less than 1% of the variance in 

exit slip scores lay across schools and classes, 12% of the variance lay across students in the 

same class, and 88% of the variance lay across lessons completed by the same student. 

Accordingly, I eliminated the level-3 and level-4 models and proceeded with a two-level model 

featuring lessons nested within students. My Level-1 model includes several time-variant 

instructional variables, including number of exposures to the skill, the number of rounds in 

which the skill had been taught to the student, the number of exposures the student has had to 

TBPP, instructional method, teacher classification, group size, average fall MAP score of the 
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group, and the content gap, which is defined as the difference between the grade level of the skill 

assigned for instruction and the grade level of the student engaged in instruction. My level-2 

model features time-invariant student-level demographic variables, including beginning-of-year 

achievement on the NWEA MAP assessment.  

I tested for two types of interactions across variables. First, my level-1 model included 

interactions between the instructional method and other lesson-level variables to test whether the 

effects of the teacher, group size, group mean MAP score, or content level varied depending on 

the instructional method. Second, I used a “slopes-as-outcomes” approach to test for cross-level 

interactions between the time-variant instructional variables in my level-1 model and the time-

invariant variables in my level-2 model (Seltzer, 1995). These cross-level models tested for 

interactions between level-1 instructional variables and each student’s standardized score on the 

Fall 2015 NWEA MAP assessment. While a typical instructional model would likely feature 

very strong correlations between a student’s score on a baseline academic assessment such as 

MAP and subsequent daily academic assessments results, this effect was minimized given 

TBPP’s use of baseline academic data to calibrate the difficulty of each student’s daily 

instructional content. I tested for the within-level and across-level interactions separately; in 

other words, I did not test for interactions between the intra-level-1 interaction terms and the 

level-2 variables. 

I describe my multi-level model below: 

Level – 1: Yij = p0j + p1j(SKILLCOUNTij) + p2j(ROUNDCOUNTij) + p3j(TBPPCOUNTij) + 
p4j(METHODij) + p5j(TEACHERij) + p6j(GROUPSIZEij) + p7j(GROUPMEANMAPij) 
+ p8j(CONTENTij) + p9j(METHODij * TBPPCOUNTij) + p10j(METHODij * 
TEACHERij) + p11j(METHODij * GROUPSIZEij) + p12j(METHODij * 
GROUPMEANMAPij) + eij 

Level – 2: ppj = bp0 + bp1 (Xj) +bp2(FALLMAPj) + rpj 
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where:    Yij = the exit slip score for lesson i delivered to student j, standardized (z-scored) 
p0j = the mean exit slip score for student j 
SKILLCOUNT = the total number of lessons in which this student has received 
instruction on this skill, up to and including this lesson 
ROUNDCOUNT = the total rounds in which this student has received instruction on this 
skill, up to and including this lesson 

 TBPPCOUNT = the total number of lessons in which this student has received instruction 
via TBPP, up to and including this lesson, centered and divided by ten 

 METHOD = the instructional method for the lesson 
 TEACHER = a dummy indicator for whether the teacher is a CMT or a TA 
 GROUPSIZE = the total number of students whose instruction is simultaneously 

supervised or led by the same teacher, centered 
 GROUPMEANMAP = the mean standardized MAP score for the group of students 

whose instruction is simultaneously supervised or led by the same teacher 
 CONTENT = the instructional content level, coded as described previously 
 FALLMAP = student j’s Fall score on the NWEA MAP assessment, standardized (z-

scored) 
 Xj = a vector of the student demographic variables for student j 

eij = the residual, unexplained variance associated with lesson i, assumed to be normally 
distributed with a mean of zero and a variance of s2 
rpj = the residual, unexplained variance associated with student j, assumed to be normally 
distributed with a mean of zero and a variance of s2 

 

My within-student (Level 1) model estimates the extent to which variance in exit slip 

scores is associated with specific elements of a daily TBPP lesson. My student-level (Level 2) 

model then describes exit slip scores as a function of student characteristics. My final analysis 

entails a ‘‘slopes-as-outcomes’’ approach, which allowed me to ascertain whether the 

relationship between TBPP’s instructional delivery (i.e. Level 1 variables) and exit slip 

performance varies for different types of students (i.e. Level 2 variables) (Seltzer, 1995). All 

analysis was conducted using Stata 15 software. 

Because the data is longitudinal over the course of the year, it is important to include 

indicators for time within the model so as not to violate the statistical assumption of 
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independence of observations (Raudenbush & Bryk, 2002; Singer & Willett, 2003). I model the 

longitudinal nature of the data using three variables: SKILLCOUNT, ROUNDCOUNT, and 

TBPPCOUNT. The SKILLCOUNT variable reflects the number of lessons in which the student 

has received instruction on the skill, including the current lesson. Similarly, the ROUNDCOUNT 

variable reflects the number of rounds in which the student has received instruction on the skill, 

including the current round. Finally, the TBPPCOUNT variable reflects the student’s total 

number of exposures to the TBPP model as a whole, centered and divided by ten. This is 

particularly relevant given some previously published indicators that students become more 

familiar with and successful in programs like TBPP over time (Murphy et al, 2014a; Ready, et al. 

2017; Rockoff, 2015). I also test the interaction between TBPPCOUNT and METHOD to 

explore whether this “familiarity” effect differs between more traditional methods, like TI, and 

methods with a steeper learning curve, like OI.  

Although reciprocal causation, also known as endogeneity, can create interpretative 

difficulties when studying time-varying predictors, there is a very low risk of reciprocal 

causation in this study (Singer & Willet, 2003). The time-varying predictors in my model (e.g. 

group size, lesson content, etc.) cannot be influenced by student participants within a single 

day’s lesson, as they are determined by the external process of the TBPP algorithm. Although the 

exit slip score is coded in the data set as contemporaneous with the other variables, the other 

time-dependent variables are determined by the TBPP algorithm in advance of the instruction 

that culminates in the exit slip; there is no avenue for a day’s exit slip to retroactively influence 

the time-dependent variables for that day.  

Overview of cluster analysis. I utilized cluster analysis to explore the relationships 

between yearlong student outcomes and longitudinal patterns in both content assignments and 
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exit slip outcomes. Cluster analysis is a descriptive data mining procedure for uncovering latent 

groupings within unstructured data (Jain, Murty, & Flynn, 1999; Romesburg, 1984). It has 

sometimes been described as a form of “quantitative phenomenology” due to its ability to display 

detailed and rich patterns of data within and across individual cases (Bowers, et al., 2017). There 

are two types of cluster analysis: structured analysis, in which the researcher presupposes certain 

assumptions about the character of the groups, and unstructured analysis, in which the nature of 

the groups is determined by the structure of the data itself (Bowers, 2007; Eisen et al., 1998; Lee, 

et al., 2016). I chose to utilize unstructured analysis due to the paucity of extant literature on 

technology-based personalization which could provide guidelines regarding the structure of the 

data (Murphy et al, 2014a; Pane et al., 2015; Wang & Woodworth, 2011; Wendt & Rice 2013). 

Although there are many types of unstructured cluster analysis, I chose to utilize hierarchical 

cluster analysis with an average linkages clustering algorithm due to its ability to efficiently 

uncover underlying structures within large datasets (Bowers, 2007, 2010; Eisen & DeHoon, 

2002; Eisen et al., 1998; Jain, Murty, & Flynn, 1999; Jorion et al., 2018; Romesburg, 1984; 

van’tVeer et al., 2002).  

 The combined use of cluster analysis and clustergram heatmaps presents several features 

that are well suited to this project. First, they do not rely upon the typical assumptions associated 

with OLS regarding multicollinearity, heteroskedasticity, and case independence, making them 

particularly useful when exploring educational datasets that are highly interdependent and nested 

(Bowers, 2007; Howell, 2002). Second, as Bowers (2007) describes, they retain the granularity 

of the data rather than aggregating to the mean and reporting a generalized trend. This is 

especially valuable when studying topics with an underdeveloped base of literature, such as 

technology-based personalization. Horn and Freeland Fisher (2016) suggest that while the bulk 
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of education research has historically investigated which interventions are most likely to work on 

average for a typical student, future research should instead probe deeper to chart predictably 

effective paths for individual students or types of students. The deep, broad, and diverse data 

produced by innovative technology-based learning models may unlock expansive new frontiers 

for educational research similar to the way that the mapping of the human genome sparked a 

revolution in medical research. Accordingly, it is appropriate to explore whether the statistical 

techniques that have proven so powerful in the field of bioinformatics may hold the same 

promise in educational contexts. 

For this analysis, I grouped the students according to the similarity of the pattern of their 

standardized exit slip scores across the year. In addition, since exit slip scores are directly 

associated with each day’s assigned content, and content assignment is in turn determined by 

each student’s unique progression through the TBPP skills map, I conducted a separate cluster 

analysis using the content gap of assigned lessons as the relevant set of data upon which to 

cluster (content gaps were coded using the procedure described in the Data section above). In 

other words, I conducted the cluster analysis twice – once with students grouped according to 

similarity in the pattern of their exit slip scores, and a second time according to similarity in the 

pattern of the content levels assigned to them by the TBPP algorithm. 

After completing the cluster analyses, I utilized several visualization techniques to aid 

analysis and make the results more easily comprehensible. First, I drew cluster trees, which are 

sometimes also known as dendrograms (Eisen et al., 1998; Romesburg, 1984). Cluster trees use 

lines to link cases and clusters of cases based on their similarity to one another. The algorithm 

places cases and clusters closest to those with which they are most similar, enabling the reader to 

use the length of the connecting line as a proxy for the quantitative similarity of the underlying 



 

 73 

data. I also used a form of heatmap known as an clustergram to visualize the data. First 

pioneered in the field of bioinformatics, clustergrams represent the variables of interest with 

blocks of color, aiding the human eye in quickly and efficiently detecting patterns across cases 

(Bowers, 2007, 2010; Eisen et al., 1998; Lee, et al., 2016; Jorion, et al., 2018; van’tVeer et al., 

2002). A clustergram typically displays cases as rows and data categories as columns. For my 

analysis, rows represent students and columns represent methods, days of instruction, or months 

of instruction. Each individual data point is represented by a color that reflects its value. 

Accordingly, the clustergram enable us to visualize the complete learning trajectory of each 

student longitudinally over the course of the year. Cluster analysis and heatmap visualization 

were completed using RStudio 1.0.143 software, with support from code written by Bowers & 

Zhao (2018) and developed through the support of the National Science Foundation under grant 

no. 1546653. 

Clustergrams also enable the linking of dichotomous outcome variables to individual 

cases. In the bioinformatics literature, this technique is used to explore whether groups of genes 

are associated with the appearance of certain tumors, facilitating the development of diagnostic 

methods and treatments (Eisen et al., 1998; van’tVeer et al., 2002). Within the field of education, 

variables like high school completion and ACT attempts have been used as dichotomous 

outcomes (Bowers, 2007, 2010). For this study, my clustergrams will include three variables of 

interest: (1) a students’ score on the Fall 2015 NWEA MAP math assessment; (2) a student’s 

proficiency level on the Spring 2016 PARCC math assessment, and (3) a dichotomous variable 

reflecting whether a student met the “typical growth” norm published by NWEA for the period 

between Fall 2015 and Spring 2016. These analyses will directly address my second research 

question: what are the relationships among various elements of the TBPP model and student 
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outcomes, and in particular, do what extent do daily content assignment or exit slip data predict 

end-of-year results on the PARCC and MAP assessments? They will also enable me to explore 

whether the results differ for clusters of students, including latent groups that may not be 

identifiable based on available indicators (e.g. gender, LEP status, etc.) 

The list below summarizes my analytic process, drawing heavily from Romesburg (1984) 

and Bowers (2007): 

1. Convert clustering variables (i.e. exit slip or content assignment) onto a standardized 

scale 

2. Create a resemblance matrix by calculating a distance measure between every case 

3. Combine the two most similar cases into a cluster 

4. Recalculate the resemblance matrix 

5. Iterate over steps 3 and 4 until all of the cases are clustered into one cluster, e.g. n-1 times 

6. Rearrange the order of the cases on the basis of their similarity according to the results of 

step 5 

7. Draw the dendrogram 

8. Draw the clustergram 

9. Interpret the clusters 

The clustering algorithm begins by matching the most similar cases based on the 

similarity of their respective data. These two cases are then redefined as a cluster, and the 

resemblance matrix is recalculated with the new cluster serving as a case. This process continues 

iteratively, with cases grouped into larger and larger clusters, until the clustering algorithm 

defines all cases as belonging to a single cluster encompassing the entire population of cases. 

This requires n-1 iterations, with n representing the total number of student cases. The clustering 



 

 75 

process does not change the underlying data for each case, but instead reorganizes them so that 

similar cases are grouped together.  

The process described above reflects two specific analytic decisions: the choice of 

hierarchical clustering as a clustering method and the use of average linkages as a distance 

measure. Below, I briefly describe the literature on the available alternate options and the 

rationale for my analytic choices. 

Choice of clustering algorithm. I chose to utilize a hierarchical clustering method over 

the two most prominent alternatives, K-means clustering and self-organizing maps (Eisen & 

DeHoon, 2002; Jaskowiak, Campello, & Costa, 2014). The primary disadvantage of K-means 

clustering is that this technique requires the supposition of a pre-set number of clusters prior to 

initiating the clustering algorithm. Since there is no reason based on the literature or theory to 

assume a priori a specific number of clusters, any choice would be arbitrary and could interfere 

with obtaining the most accurate results (Eisen & DeHoon, 2002; Jain, Murty, & Flynn, 1999). 

One alternative option could be to utilize principal component analysis to identify a number of 

clusters that represent a significant portion of data, then apply k-means clustering for the 

classification (Ding & He, 2004). However, there is evidence that the principal components that 

contain most of the variation in the data do not necessarily capture most of the cluster structure, 

and clustering with principal components does not necessarily improve cluster quality (Yeung & 

Ruzzo, 2000).  

Self-organizing maps, which were invented by Teuvo Kohonen in the early 1980s, are a 

technique for mapping high-dimensional vectors onto a smaller dimensional space (Eisen & 

DeHoon, 2002; Mangiameli, P., Chen, S. K., & West, D. 1996). One advantage of self-

organizing maps compared to K-means clustering is that self-organizing maps do not require any 
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prior knowledge about the structure of the data. However, while self-organizing maps are well 

suited to high-dimensional input spaces like data on the structure of the human brain, my data 

requires clustering only according to the exit slip score or content gap. Accordingly, self-

organizing maps would have been a poor choice for my data, which is poorly aligned with the 

type of continuous, high-dimensional input space for which self-organizing maps are typically 

utilized. 

Choice of linking and distance methods. Even within the family of hierarchical 

clustering methods, there are several linking methods and distance measures from which to select 

(Costa, Carvalho, & de Souto, 2002; Jaskowiak, Campello, & Costa, 2014; Romesburg, 1984). I 

elected to utilize an average linkages method, which defines the similarity between any two 

clusters as the arithmetic average of the similarities between the objects in one cluster and the 

objects in the other (Romesburg, 1984). This method offers several advantages over the 

alternative single linkage and complete linkages methods. First, it is robust to missing data 

(Bowers, 2007, 2010). Second, it incorporates the full range of data from each case rather than 

only the most similar or dissimilar measure, making it a good fit for a research question that 

seeks to explore the full yearlong experience for each student. Finally, average linkages is widely 

used within the literature, and Romesburg (1984) suggests it as the preferred hierarchical 

clustering method (Eisen et al., 1998; Bowers, 2007). 

In contrast, the alternate hierarchical clustering methods all offer serious drawbacks in 

their applicability to this data and research question. Whereas the average linkages method 

encompasses all corresponding objects within each cluster, the single linkage and complete 

linkage methods calculate the distance based on only the smallest or largest distance among 

cases, respectively (Jaskowiak, Campello, & Costa, 2014; Romesburg, 1984). Because the 
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multiple-choice format of TBPP’s exit slip constrains students’ daily outcomes to a relatively 

small number of possible values, these methods are likely to overestimate the similarity among 

cases. Centroid clustering represents a final alternative method, but the literature recommends 

against using this technique in combination with Pearson’s correlations, since the differences in 

normalization of data vectors can produce strange situations in which distances decrease as we 

move up the cluster tree (Eisen & DeHoon, 2002). 

I chose to utilize uncentered Pearson’s correlations as a distance measure. One prominent 

alternative measure is Euclidian distance, which simply calculates the direct distance between 

the measures (Bowers, 2007; Jaskowiak, Campello, & Costa, 2014; Romesburg, 1984). While 

Euclidian distance is widely used in the literature, it does not work well for data that is not 

normalized, such as the data on the grade-level gap of assigned content that I include in my 

analyses (Eisen & DeHoon, 2002; Jain, Murty, & Flynn, 1999). In addition, in an empirical test 

of accuracy using yeast data, Costa, Carvalho, & de Souto (2002) found that Euclidian distance 

had the lowest accuracy in three out of four tested datasets, and was not demonstrably superior in 

the fourth. An alternative form of Euclidian distance is Cityblock or Manhattan distance, which 

calculates the sum of the distance along each dimension rather than the shortest distance overall 

(Eisen & DeHoon, 2002; Jaskowiak, Campello, & Costa, 2014). However, since this method is a 

variation of Euclidian distance, it suffers from many of the same shortcomings. 

Spearkman’s Rank and Kendall’s Tau represent alternative techniques for calculating 

distance. These methods reduce the effects of outliers by converting data into ranks rather than 

calculating distance based on actual value, and are often used when analyzing ordinal data (Eisen 

& DeHoon, 2002; Howell, 2002; Romesburg, 1984). However, a visual examination of the 
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distribution of exit slip and content assignment data suggests that outliers will not be an issue, 

and ranking the data will not make sense given how many repeated values the dataset features. 

Accordingly, I will calculate distance measures between cases using uncentered Pearson 

correlations, defined as: 
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In contrast to traditional Pearson correlations, in which each data point is subtracted from 

the case mean as part of the calculation, the uncentered correlation formulas above assume the 

mean for each case to be zero. This is important in situations in which two vectors have the same 

shape, but are separated by a constant value – for example, two students whose exit slip scores 

improved at the same rate over the course of the year, but began at a different starting point. In 

such a scenario, a traditional centered Pearson correlation would produce a correlation 

coefficient of 1, indicating that these two cases are identical, but an uncentered correlation 

method would helpfully distinguish between them (Bowers, 2007, 2010; Eisen & DeHoon, 2002; 

Eisen et al., 1998; van’tVeer et al., 2002). 

Although the preceding section evaluated the relative strengths and shortcomings of 

various clustering methods and distance measures, it should be noted that no technique has been 

demonstrated to be universally superior to all others (Bowers, 2007; Costa, Carvalho, & de 
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Souto, 2002; Eisen & DeHoon, 2002; Eisen et al., 1998; Jain, Murty, & Flynn, 1999; Jaskowiak, 

Campello, & Costa, 2014; Romesburg, 1984). Instead, the choice of analytic techniques is highly 

dependent on context, data structure, and research question. There is not yet a robust literature on 

the application of clustering techniques to the student-level, daily data produced by personalized 

learning programs; this study may represent a first step towards building the more developed 

base of evidence that could be applied to this type of data in future studies. 
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5. Results: Hierarchical Linear Modeling 

Lesson-Level Results 

I utilized several models to examine the relationship between lesson-level predictors and 

standardized exit slip scores. The first of these, Model 1 (see Table 7 below), included as 

predictors the total number of lessons in which the student has studied the skill, the total number 

of rounds in which the student has studied the skill, the total number of TBPP lessons completed 

by the student since the start of the school year (centered and divided by ten), and dummy 

indicators representing the method of instruction, with OI as the uncoded comparison group. 

Model 1 suggests that exit slip scores are .014*** standard deviations lower for each 

additional lesson in which a student is exposed to a skill and .021** standard deviations lower 

for each additional round in which a student is exposed to a skill. This implies that some students 

may become stuck on particular skills and have a hard time becoming “unstuck,” even after 

repeated lessons. However, these results may also be influenced by survivorship bias, as students 

who pass exit slips are automatically excluded from the pool of students exposed to that skill an 

additional time. Model 1 also suggests that exit slips scores are .014*** standard deviations 

lower for every ten lessons in which a student participates in TBPP, regardless of how many 

times he or she has been exposed to that skill. In addition, the results for the method dummy 

variables suggest statistically significant positive effects for the OP (.035***) and LTP (.079***) 

methods compared to the OI reference category, but statistically significant negative effects for 

the LG (-.051***), SG (-.035***) and TI (-.016*) methods. However, although these results are 

statistically significant, their magnitude is quite small (Cohen 1988, 1992). 
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Table 7: Multi-level Regression on Standardized Exit Slip Results with Level-1 Interactions 
 Model 1 

(n=169,745) 
Model 2 

(n=169,745) 
Model 3 

(n=169,745) 
Model 4 

(n=169,745) 
Model 5 

(n=169,745) 
Model 6 

(n=169,745) 
Lesson (Level 1)       
Skill exposures -.014***a -.007*** -.007*** -.007*** -.007*** -.007*** 
Round exposures -.021** -.027*** -.026***  -.027*** -.028*** -.027*** 
TBPP exposuresb -.014*** -.006*** -.008*** -.006*** -.006*** -.006*** 
OPc .035*** .034*** .034***  .012 .025** .035*** 
PP -.012 -.017* -.016* -.022~ -.015~ -.017* 
LG -.051*** -.007 -.005 -.033* .050** -.005 
SG -.035*** -.006 -.005 -.020~ .002 -.004 
LTP .079*** .141*** .142*** .148*** .140*** .137*** 
TI -.016* .048*** .049***  .054*** -.020~ .046*** 
Math teacher  -.016** -.015* -.033*** -.017** -.015* 
Group sized  .001 .001 .001 .002* .005 
Group MAP meane  -.022*** -.025*** -.021*** -.021*** -.044*** 
-3 content gap  .486*** .485*** .485*** .483*** .484*** 
-2 content gap  .414*** .415*** .414*** .412*** .414*** 
-1 content gap  .234*** .234*** .234*** .231*** .234*** 
+1 content gap  -.116*** -.117*** -.116*** -.116*** -.116*** 
+2 content gap  -.433*** -.429*** -.434*** -.433*** -.430*** 
N/A content gap  .057*** .054*** .056*** .059*** .057*** 
       
Lesson-Level Interactions      
OP * TBPP exposures   .000     
PP * TBPP exposures   .000    
LG* TBPP exposures   .004**     
SG * TBPP exposures   .004**    
LTP * TBPP exposures   .002    
TI * TBPP exposures   .005***     
OP * MAteacher    .035*   
PP * MAteacher    .010   
LG* MAteacher    .067**   
SG * MAteacher    .031~   
OP * groupsize     .003*  
PP * groupsize     .000  
LG* groupsize     .009***  
SG * groupsize     .001  
LTP * groupsize     .002  
TI * groupsize     -.010***  
OP *Group MAP mean      -.009 
PP * Group MAP mean      .008 
LG* Group MAP mean      .086*** 
SG *Group MAP mean      .065** 
LTP*Group MAP mean      .086** 
TI * Group MAP mean      .014 
Constant .040** -.091*** -.093*** -.081*** -.090*** -.090*** 
       
Student (Level 2)       
Random effect .119 .154 .155 .154 .154 .155 
Residual .874 .847 .847 .847 .846 .847 
~p<.10. * p<.05. ** p<.01. ***p<.001 

 
a Outcome is standardized (M = 0, SD = 1); b Centered and divided by ten; c All methods are compared to OI 
d Group size is centered; e Measure is the mean of MAP scores standardized within each grade (M = 0, SD = 1) 
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The schools’ implementation of PARCC “test prep” in the spring complicates the 

interpretation of the effect of TBPP exposures. As indicated by Chart 2 below, students’ mean 

exit slip scores decline significantly around Day 131 of implementation, which is the point in the 

year when the school district required that TBPP’s algorithm be modified to assign all students to 

“on grade-level” content every day in order to prepare them for the high-stakes, state-mandated 

PARCC assessment. This is in contrast to TBPP’s typical practice of assigning students to 

content that it determines to be in their zone of proximal development, which is typically below 

grade level. 

 

Chart 2: Standardized exit slip results over time 
 

 
 

To account for this change, I re-ran Model 1 using only the data from the first 131 days 

of the academic year, prior to the discontinuity introduced by test prep. This parallel analysis 

indicated no effect for TBPP exposures, a marginally significant negative effect for skill 

exposures (-.004~), and a significant negative effect for round exposures (-.036***). Although 

the findings for the first 131 days are slightly different than those for the full year, neither 
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analysis supports the existence of an increase in outcomes over time as students and teachers 

become more familiar with the new system. Instead, outcomes appear to remain consistent or 

decline slightly over time. 

 In Model 2, I add several additional lesson-level variables, including the teacher type 

(CMT compared to TA), centered group size, standardized group Fall MAP math mean score, 

and a dummy variable representing the gap between the student’s grade level and the grade level 

of the lesson content. The findings indicate a statistically significant negative effect for CMTs 

compared to TAs (-.016**), although it is important to note that this dataset only allows the 

comparison of CMTs to TAs for the OI, OP, PP, LG, and SG methods, since the TBPP algorithm 

does not assign TAs to lead the TI or LTP methods. Model 2 indicates no statistically significant 

relationship between group size and exit slip score, and a negative relationship between group 

MAP mean and exit slip score (-.022***). This suggests that each standard deviation increase in 

the mean Fall Math MAP score of an instructional group is associated with a .022*** standard 

deviation decrease in the exit slip score of the students in that group. The method effects are in 

some cases slightly different in Model 2 than in Model 1; Table 8 below summarizes the effects 

in each model. In Model 2, there is a statistically significant positive relationship between exit 

slip scores and the OP (.034***), LTP (.141***) and TI (.048***) methods and a negative 

relationship for the PP method (-.017*) compared to the OI reference category. Again, however, 

the magnitude of these effects is quite small, with the exception of the positive effect for the LTP 

method. 
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Table 8: Method Estimates for Model 1 vs. Model 2 

 
Model 1 Model 2 

   
Independent-Led Methods   

Online Instruction (OI) N/A – Reference Category 
Online Practice (OP) .035*** .034*** 
Paper Practice (PP) -.012 -.017* 
   

Student-Led Methods   
Large Group (LG) -.051*** -.007 
Small Group (SG) 
 

-.035*** -.006 

Adult-Led Methods   
Teacher Instruction (TI) -.016* .048*** 
Long Term Projects (LTP) .079*** .141*** 

 

The largest overall effects within Model 2 are for the content level dummy variables, 

which represent the difference between the grade level of the instructional content and the 

student’s grade level. There were very large and statistically significant positive effects for 

instructional content below a student’s grade level, and very large and statistically significant 

negative effects for content above a student’s grade level (-3=.486***; -2=.414***; -1= .234***; 

+1=-.116***; +2=-.433***). As a test for robustness, I also re-ran Model 2 using a different 

methodology for calculating the match between student and content level; rather than compare 

the instructional content to the student’s grade level, I instead compared it to the grade level 

associated with that student’s Fall Math MAP score (NWEA, 2015). This parallel analysis also 

indicated a statistically significant effect of -.117*** for each grade that the instructional content 

exceeded the student’s MAP level. In other words, each level that the lesson’s content exceeded 

the student’s zone of proximal development as measured by MAP was associated a .117 standard 

deviation decrease in exit slip score. This means that students also performed better on content 

that was below their zone of proximal development. 
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Although it is not surprising that students would perform worse when tested on content 

above their zone of proximal development, what is surprising is that TBPP would produce these 

types of mismatches in the first place. After all, TBPP is specifically designed to eliminate 

student/content mismatches by implementing personalized instructional pathways for each 

student. However, I found that prior to Day 120 of instruction, 19.9% of all lessons addressed 

content that was more than one standard deviation above the student’s Fall MAP level and 24.8% 

of lessons addressed content that was more than one standard deviation below the student’s Fall 

MAP level12. In other words, nearly half of all lessons addressed content that was either far 

above or far below the zones of proximal development suggested by students’ beginning-of-year 

assessments.  

There are at least two potential explanations for this consistent pattern of mismatches. 

The first is that Fall MAP score is an imprecise estimate of a student’s true academic level, 

especially as the year progresses and her or his abilities develop. In other words, as each student 

learns new math content and is matched to more challenging lessons through TBPP’s ongoing 

analysis of daily assessment data, his or her Fall MAP score will quickly become outdated, 

creating an apparent mismatch. This explanation is partially supported by the fact that students 

were more likely to be matched with content that appeared too difficult than too easy, which 

would be consistent with the students’ abilities growing beyond their beginning-of-year levels. 

However, this fails to explain the 24.8% of lessons that were assigned below the zone of 

proximal development suggested by students’ Fall math MAP scores. 

                                                
1 I calculated grade levels associated with NWEA MAP scores by identifying the RIT score 
associated each grade level’s Fall 2015 NWEA MAP math norm, then calculating non-
overlapping RIT bands for each grade centered around each grade’s norm  
2 Data for the full year is likely heavily influenced by the advent of test prep, with 30.8% of 
lessons addressing content more than one standard deviation above a student’s Fall 2015 MAP 
level and 12.0% addressing content more than one standard deviation below.  
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An alternate explanation for mismatches is the logistical difficulty of generating a “right-

fit” assignment for each student every day. Although the TBPP algorithm can assign students in 

the OI, OP, and PP methods to work on any content at any time, the TI, LTP, LG, and SG 

methods all require multiple students ready to work on the same content simultaneously. 

Accordingly, TBPP’s scheduler may be forced to routinely place some students in groups 

focused on content that is either too low or too high. This problem is likely exacerbated by the 

algorithm’s commitment to exposing each student equally to each method, regardless of her skill 

level or the skill level of her peers. However, the fact that content mismatches are approximately 

equally likely to appear within each method, as indicated by Table 9 below, suggests that the 

difficulty of creating groups for the TI, LTP, LG, and SG methods is not the sole cause of 

mismatches. 

Table 9: Lesson Level Vs. Students’ Fall Math MAP Levels – First 120 Days of TBPP 
 TI OI OP LG PP SG LTP 
% of lessons above 
student’s grade level 
 

22% 18% 17% 24% 20% 23% 22% 

% of lessons at or near 
student’s grade level 
 

57% 54% 56% 55% 53% 57% 55% 

% of lessons below 
student’s grade level 

20% 28% 27% 21% 27% 21% 23% 

        
Total % of lessons above 
or below grade level 

43% 46% 44% 45% 47% 43% 45% 

 

Lesson-Level Interactions 

Model 3 retains all of the lesson-level variables from Model 2, but adds interaction terms 

between each method and the total number of exposures to the TBPP model. This enables an 

examination of whether the relationship between exit slip scores and familiarity with the TBPP 
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model varies based on method3. In this model, the estimates for the method effects (e.g. OP, PP, 

etc.) represent the relationship between that method and exit slip score when the centered TBPP 

exposure value is set to zero. When the value for TBPP exposures differs from zero, its 

relationship with exit slip scores is described by the combination of the coefficient for TBPP 

exposures and the coefficient for TBPP interactions.  

For example, when the value for centered TBPP exposures is zero, the effect size for a 

student in a TI is .049***. However, when the value for centered TBPP exposures is 1, then the 

combined effect size is .046. This value is obtained by combining the .049 value for the TI, the 

.005*** value for TI * TBPP exposures, and the -.008*** value for TBPP exposures. Similarly, 

when the value for TBPP exposures is 2, then the combined effect size is .043, representing a 

combination of the .049*** value for the TI effect, the .010 value for the “TI * TBPP exposures” 

effect (.005*** times two), and -.016*** for the TBPP effect (-.008 times two). As the pattern 

described above indicates, there is a net effect of -.003*** within the TI method for each point of 

increase in the TBPP exposures variable (-.008*** minus .005***). This indicates that for every 

ten additional TBPP lessons, a student’s mean exit slip in the TI method is on average decreased 

by .003 standard deviations. 

Looking across all of the interaction terms, we see a range from .000 to .005***. Because 

all of these values are smaller in magnitude than the -.008*** value for TBPP exposures alone, 

we can infer that there is a negative relationship between TBPP exposures and exit slip scores for 

all methods. However, the magnitude of that relationship varies across methods; it is largest for 

OP (-.008***), PP (-.008***), and OI (-.008***), but smallest for TI (-.003***). Although the 

                                                
3 These interaction terms consider total exposures to TBPP across all methods, not just the 
method with which the interaction is applied. In other words, “LG * TBPP exposures” reflects 
the effect of an LG lesson given the total number of all TBPP lessons, not just the total number 
of LG lessons. 
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magnitude of these effects is small, they can add up rapidly, given that values for TBPP 

exposures ranges from -10.9 to 13.6. In other words, a typical student’s average exit slip score on 

the OI method is .080 standard deviations higher on average on the first day than the hundredth 

day of TBPP instruction. 

Model 4 retains all of the lesson-level variables from Model 2, but adds interaction terms 

between each method and the teacher type. Interpreting the effect sizes using the same method as 

in Model 3, we see that the effect of a CMT is .002*** in the OP method, -.055*** in the PP 

method, .001*** in the LG method, and -.022*** in the SG method.  

 

Table 10: Combining Effects for Model 4 
 CMT effect Method effect Interaction effect Combined effect 
OP -0.033*** 0.0124 0.035* 0.002*** 
PP -0.033*** -0.022~ .010 -0.055*** 
LG -0.033*** -0.033* 0.067** 0.001*** 
SG -0.033*** -0.020~ 0.031~ -0.022*** 
 

 

These results are difficult to interpret. Given the similarity between the LG and SG 

methods; it is not clear why we should see a negative effect for a CMT in the SG method, but no 

effect for the LG method. Similarly, it is not immediately apparent why there should be a 

negative effect for a CMT in the PP method, but no effect in the OP method, which is 

structurally quite similar. Again, however, these effects are small in magnitude, and may 

represent an artifact of the very high statistical power of the model rather than meaningful 

variation in the program’s effectiveness. 

Model 5 tests for interaction effects between method and group size. It indicates 

statistically significant effects for group size within four methods: OI (.002*), OP (.005*), LG 

                                                
4 Non-significant effects are not included in the combined effect 
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(.011***), and TI (-.008***). Again, the effects for the OP, LG, and TI methods were calculated 

by combining the group size effect and the interaction effects. The negative relationship between 

group size and student achievement in the TI method is in keeping with previous literature on 

class size effects (Krueger & Whitmore, 2001; Mosteller, 1995). The positive interaction term 

between group size and the LG method can potentially be explained by LG’s collaborative 

structure. In a collaboration-based method like LG, larger groups may be more likely to contain 

at least one student who understands the content well enough to explain it to others, who can 

translate the task into Spanish for a LEP peer, or with whom a middle schooler will have a close 

relationship that enables them to work productively. This means that collaboration-based 

methods may exhibit positive network effects as group size grows. 

Finally, Model 6 examines the interaction between the method and the overall ability of 

the instructional group, as indicated by the standardized group Fall MAP math mean score. 

Notably, the three methods that feature the highest degree of student-to-student interaction have 

significant positive interaction effects: LG (.042***), SG (.021**), and LTP (.042***). This 

means that participating in a group with higher-performing students was positively associated 

with exit slip outcomes for these methods, while participating in a group with lower-performing 

students was negatively associated with exit slip outcomes. This is strong evidence of a peer 

effect, in which students benefit from proximity to higher-performing students when they are in 

methods that allow for significant peer interaction. There was no statistically significant 

interaction effect between group MAP mean and the OP, PP, OI, or TI methods, suggesting that 

any positive effects of group MAP mean do not extend to methods in which students are not 

spending a significant amount of time interacting with peers. Instead, the effect of group MAP 

mean in those methods is -044***, suggesting that students in higher-performing OP, PP, OI, 
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and TI groups scored lower on average on exit slips, all else being equal. One potential 

explanation for this effect is that higher-performing students are more likely to advocate for 

themselves by raising their hand to demand the teacher’s attention, reducing the level of support 

available for other students in their OI, PP, OI, or TI group. Another explanation could be that 

teachers prepare more extensively or exert more effort when supervising a method with lower-

performing students.  

Student-Level Results 

In Model 7 (see Table 11 below), I retain the lesson-level variables from Model 2, then 

introduce several time-invariant Level 2 variables, including fall MAP score, gender, 

race/ethnicity, free/reduced price lunch status, grade level, LEP status, and special education 

status. Of all these variables, only Fall math MAP was associated to a statistically significant 

degree with standardized exit slip outcome. The effect was .090***, suggesting that each 

standard deviation increase in a student’s Fall MAP math score was associated with a .090 

increase in that student’s exit slip score. Conversely, it also suggests that each standard deviation 

decrease in a student’s Fall MAP math score was associated with a .090 standard deviation 

decrease in that student’s exit slip score. The interpretation of this result depends on what 

construct one assumes Fall Math MAP to represent. To the degree that it represents mathematics 

skill, the results suggest that the TBPP algorithm may not be setting ambitious enough targets for 

high-performing students. This would be aligned with my previously discussed findings 

regarding the prevalence of content level mismatch, which indicates that TBPP routinely 

matches high-performing students with content that is not rigorous enough to be in their zone of 

proximal development. In contrast, were one to assume that Fall Math MAP score were 

correlated with a broader set of abilities, then the result would suggest that higher-scoring 
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students were more likely to be successful on exit slips for reasons not related to mathematical 

skill - perhaps due to a greater ability to adapt to the innovative nature of the TBPP model, or 

increased ability to stay focused. Finally, since the MAP assessment is taken on a computer, the 

Fall Math MAP score may be assumed to represent facility with technology, which would 

certainly be relevant to TBPP’s technology-heavy instructional model. 

To evaluate these possibilities, I re-ran Model 7 with Fall Reading MAP in place of Fall 

Math MAP. I found that Fall Reading MAP was related to exit slip outcome (.044***), but with 

approximately half the effect size of Fall Math MAP. This lends credence to the theory that 

general academic ability, diligence, or facility with technology may be positively associated with 

exit slip performance, since those two competencies, but not math ability, were assessed by the 

MAP Reading assessment. However, the difference between the magnitude of the MAP Math 

and MAP Reading effects suggests that there is also some relationship between prior 

mathematical ability and exit slip performance.  

In Model 8, I evaluated the interaction between a student’s math MAP score and method, 

finding positive interactions for all methods except PP. The effects were largest for the LTP 

(.252***) and TI (.171***) methods.5 Because the TBPP algorithm attempts to create 

homogeneous groups by placing students with peers who are at their same level, the positive 

effects across all methods could be interpreted as indicative of TBPP tracking students in ways 

that exacerbate existing inequalities. In other words, if high-performing students are more likely 

to grouped with other high-performing students, and low-performing students are more likely to 

be grouped with low-performing students, and students perform better when placed with higher-

                                                
5 Again, I derived these values by combining the values for Fall MAP and the interaction effects. 
For example, the effect of a one standard deviation increase in Fall MAP score for a student in 
the LTP method is equal to .252***, which I calculating by combining the FallMAP effect of 
.071*** and the “LTP * FallMAP” effect of .181***. 
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performing peers, then participation in TBPP would widen gaps between the mathematical 

ability of the highest and lowest performing students. In addition, the fact that these effects seem 

strongest in the LG, SG, LTP, and TI methods is further evidence for the existence of peer 

effects, given that these four methods all involve significantly more student-to-student 

interaction than the PP, OI, or OP methods. 

Model 9 examines the interaction between teacher type and a student’s Fall MAP score, 

finding a marginally significant positive interaction (.010~) and a negative overall effect for a 

math teacher (.020*). This may indicate that higher performing students are more likely to 

benefit from the unique pedagogical content knowledge of MAs, or that lower performing 

students are more likely to benefit from the specialized special education or LEP skills possessed 

by TRs. However, given the marginal significance and very small effect size, I would caution 

against reading too much into this finding. Finally, in Model 10 I examined the relationship 

between Fall MAP score and group size. I found that for every standard deviation that a student’s 

Fall MAP score increased, the association between exit slip outcomes and group size decreased 

by .001*** standard deviations. This suggests that larger group sizes are likely to be more 

harmful to the performance of lower performing students than higher performing students. 

Again, however, the effect size is quite small in magnitude.  
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Table 11: Regression on Standardized Exit Slip Results with Cross-level Interactions 
 Model 7 

(n=153,062) 
Model 8 

(n=153,062) 
Model 9 

(n=153,062) 
Model 10 

(n=153,062) 
Lesson (Level 1)     
Skill exposures -.007*** -.008*** -.007*** -.007*** 
Round exposures -.025*** -.028*** -.025*** -.025*** 
TBPP exposures -.006*** -.007*** -.006*** -.006*** 
OP .031*** .033*** .032*** .032*** 
PP -.017* -.018* -.017* -.017* 
LG -.006 -.003 -.006 -.005 
SG -.012 -.009 -.013 -.012 
LTP .149*** .148*** .150*** .149*** 
TI .050*** .051*** .050*** .051*** 
Math teacher -.021** -.016* -.020* -.020* 
Group size .001~ .001 .001 .001 
Group MAP mean -.024*** -.051*** -.024*** -.032*** 
-3 content gap .514*** .495*** .514*** .511*** 
-2 content gap .427*** .420*** .427*** .426*** 
-1 content gap .237*** .236*** .237*** .237*** 
+1 content gap -.117*** -.114*** -.117*** -.117*** 
+2 content gap -.453*** -.435*** -.453*** -.451*** 
N/A content gap .059*** .065*** .059*** .060*** 
Constant -.059*** -.055*** -.057*** -.057*** 
     
Student (Level 2)a     
FallMAP .090*** .071*** .085*** .090*** 
Female .007    
Black .000    
Hispanic .000    
Asian .044    
Free lunch .000    
Reduced lunch .023    
LEP .026    
SPED .000    
     
Cross-Level 
Interactions 

    

OP * FallMAP  .020*   
PP * FallMAP  .006   
LG* FallMAP  .068***   
SG * FallMAP  .065***   
LTP * FallMAP  .181***   
TI * FallMAP  .100***   
Math teacher * FallMAP   .010~  
Group Size * FallMAP    -.002*** 
     
Random effect .065 .076 .075 .075 
Residual .847 .847 .847 .847 
~p<.10. * p<.05. ** p<.01. ***p<.001 

a The model would not converge in Stata when grade level dummies were included alongside other Level 2 
variables. However, I tested them in a separate model and found them not to be significant. 
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Checking for heteroskedasticity. After estimating Model 2, I checked for heteroskedasticity 

by obtaining the predicted value (Y-hat), the residuals, and the standardized residuals. A 

histogram of the standardized residuals reveals a normal distribution. I also generated a 

correlation table containing the squared residual, absolute value of the residual, and all 

independent and dependent variables. According to these results, the highest level of correlation 

for the squared residual is with the standardized exit slip score (-.110), followed by TBPP 

exposures (.061), skill exposures (-.019), round exposures (-.012), the PP method (-.011), group 

mean MAP (-.009), and the LG method (.004),  

 
Chart 3: Distribution of Standardized Residuals 
 

 
 
 



 

 95 

Summary of results from hierarchical linear modeling. In the preceding chapter I 

utilized several models to examine the relationship between standardized exit slip scores and 

multiple lesson-level variables, within-lesson interactions, and cross-level interactions. These 

analyses produced several interesting findings. These included the lack of an upward trend in 

performance that could be associated with students’ and teachers’ growing familiarity with 

TBPP, higher exit slip scores for the OP, TI, and particularly LTP method than for other 

methods, and a negative and significant effect size for math-certified MAs compared to TRs. I 

also found significant peer effects for the LG, SG, and LTP methods, as well as a positive 

association between each student’s MAP math and exit slip scores, with the largest effects within 

the LTP, TI, SG, and LG methods. There was also a smaller, but still statistically significant 

relationship between MAP reading and exit slip scores, suggesting some unmeasured student 

characteristic other than mathematical ability that is associated with both MAP performance and 

daily exit slip performance. 

 The variable with the largest magnitude relationship to exit slip scores is the content level 

of instruction, with students performing better on content below their grade level and worse on 

content above their grade level. Although it is not surprising that students would perform worse 

when tested on content above their zone of proximal development, it is surprising is that TBPP 

would produce these types of mismatches in the first place, given that TBPP is specifically 

designed to eliminate student/content mismatches by implementing personalized instructional 

pathways for each student. 
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6. Results: Hierarchical Cluster Analysis 

Exploration of Data for Each Instructional Method  

I generated several cluster analysis heatmaps to examine the relationships among exit slip 

results, content assignments, and year-long academic outcomes. The first of these, represented by 

Figure 3 below, displays the mean standardized exit slip score for each student (rows) 

disaggregated by the seven instructional methods utilized by TBPP (columns). Mean 

standardized exit slip scores are represented by color blocks, with blue representing the bottom 

of the scale, red representing the top of the scale, and purple representing the population mean. 

The similarity or dissimilarity of the patterns of exit slip outcomes is represented on the far left 

of the heatmap by the dendrogram, or cluster tree, with longer horizontal lines indicating 

dissimilar patterns and shorter lines indicating similar patterns. The three columns on the right of 

the heatmap indicate each student’s standardized score on the Fall 2015 MAP math assessment, 

growth from the Fall 2015 to Spring 2016 MAP math assessment, and performance on the Spring 

2016 PARCC math assessment. These columns enable comparison between students’ exit slip 

patterns and their baseline mathematical ability prior to entering TBPP, growth in mathematical 

skills over the course of a year of participating in TBPP, and mathematical ability after a year of 

participation in TBPP, respectively. Although this study is unique in the application of cluster 

analysis and heatmaps to daily student assessment data, the overall approach is heavily informed 

by previous examples in the educational literature (Bowers, 2007, 2010, Bowers, et al., 2016; 

Lee, et al., 2016). 
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Figure 3: Standardized exit slip scores disaggregated by instructional method 
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 This analysis yields several interesting findings. The first is the high level of correlation 

among exit slip performance, Fall 2015 MAP score, and Spring 2016 PARCC level. This is 

evident in the general consistency of the horizontal color bands, with blue, purple and red 

appearing synchronized across the three measures. This consistency indicates that students who 

enter TBPP with a higher mathematical ability are more likely to succeed on daily exit slips and 

also more likely to end the year proficient in grade-level mathematics content, as assessed by 

PARCC. For example, Students in Cluster 1 score well on daily exit slips, Fall 2015 MAP, and 

Spring 2016 PARCC, while students in Cluster 4 have lower scores on all three measures. The 

correlation between beginning-of-year and end-of-year mathematics performance is not 

surprising, given the well-document difficulty of disrupting entrenched student achievement 

gaps. What is surprising, however, is that these measures should also be correlated with daily 

exit slip performance. TBPP is designed to match each student with daily content at his or her 

precise zone of proximal development, which should make every student equally likely to master 

that day’s exit slip, regardless of his or her starting level. Figure 3 may suggest that high-

performing students are routinely matched with “too-easy” content and low-performing students 

with “too-hard” content. Alternately, it may indicate that there is some quality possessed by 

higher performing students beyond simple mathematical ability, such as socio-emotional skills or 

ability to learn, that makes them more likely to succeed on each day’s exit slip. 

 There also appear to be small positive correlations between MAP growth and daily exit 

slip performance, Fall 2015 MAP performance, and Spring 2016 PARCC performance. The 

correlation between year-long MAP growth and daily exit slip data can be interpreted as 

evidence that daily exit slips are a useful measure of student learning, with higher performance 

on daily lessons associated with increased annual growth. However, the correlation between Fall 
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2015 MAP performance and annual MAP growth may also be evidence that TBPP provides 

inequitable experiences and outcomes for students who enter the program with different ability 

levels, as higher-performing students taking advantage of the program’s autonomy to race ahead 

while lower-performing students languish or slip through the cracks. 

  Figure 3 also suggests a high degree of correlation in students’ performance across all 

methods. In other words, students in Cluster 1 are generally successful on exit slips in all 

methods, while students in Cluster 4 are generally unsuccessful in all methods. However, there 

are some exceptions to this rule. For example, the students in Clusters 2 and 5 appear to be more 

successful in the LTP method than in other methods, while the students in Cluster 3 appear less 

successful in LTP than in other methods, such as TI and LG. Within-student differences in exit 

slip performance across methods would be in keeping with the theory of multiple intelligences 

that informed the creation of many personalized learning programs (Gardner, 2011; Horn & 

Staker, 2014). However, it is worth noting that TBPP is designed to expose all students to all 

methods with equivalent levels of frequency, not to adjust each student’s method exposure based 

on her or his past performance. 

 The format of the analysis represented by Figure 4 below is similar to that of Figure 3, 

with the exception that the heatmap data represents the mean difference between each student’s 

grade level and the grade level of the instructional content assigned to him or her within that 

method rather than mean exit slip performance. For example, lessons delivered to a 6th grade 

student featuring 4th, 5th, or 6th grade content would be coded as -2, -1, or 0, respectively. This 

enables an examination of the pattern of content assignment for each student within each 

method, as well as the relationships between that pattern of content assignments and Fall 2015 

MAP performance, year-long MAP growth, and Spring 2016 PARCC performance. 
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Figure 4: Content levels of instruction disaggregated by instructional method 
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 Figure 4 indicates several interesting data trends. First, the higher frequency of blue than 

red within the heatmap indicates that more instructional content is assigned below students’ 

grade levels than above their grade levels. Second, the heatmap indicates a high degree of 

correlation between students’ Fall 2015 MAP scores and the level of the content assigned to 

them; for example, students in cluster 6 generally performed above the mean on Fall 2015 MAP 

and were assigned above-grade level content, which is indicated by red shading on both 

measures, whereas students in cluster 8 were both more likely to perform below the mean on Fall 

2015 MAP and to be assigned below-grade level content, which is indicated by blue shading on 

both measures. This would be in keeping with the theory of action for TBPP, which uses Fall 

2015 MAP data to assign “just right” content to each student. 

The heatmap also indicates a higher frequency of below-grade level content assignments 

within the OI, OP, and PP methods than within the LG, SG, TI, and LTP methods, especially for 

students in cluster 8. In contrast, some of the higher performing clusters, such as cluster 7 and 

cluster 9, display a higher frequency of below-grade level assignments within the LTP method 

than other methods. This may reflect the logistical challenge of generating a “right-fit” 

assignment for each student every day. Although the TBPP algorithm can assign students in the 

OI, OP, and PP methods to work on any content at any time, the TI, LTP, LG, and SG methods 

all require multiple students ready to work on the same content simultaneously. Accordingly, 

TBPP’s scheduler may be forced to routinely place lower-performing students in groups focused 

on content that is too high (e.g. Cluster 8) or higher-performing students in groups focused on 

content that is too low (e.g. Cluster 7). 
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 Longitudinal Exploration of Data 

I also generated several heatmaps to examine longitudinal patterns of data across the 

duration of the academic year. In Figure 5 below, the heatmap displays standardized exit slip 

score for each student (rows) for each of 165 instructional days ranging from September 24, 

2015 to June 20, 2016 (columns). As with Figures 3 and 4, standardized exit slip scores are 

represented by color blocks, with blue representing the bottom of the scale, red representing the 

top of the scale, and purple representing the population mean. The other elements of Figure 5, 

including the cluster trees, Fall 2015 MAP math data, MAP growth data, and Spring 2016 

PARCC data are also generated and displayed in the same manner as in the previous analyses6. 

 Figure 5 below reveals several interesting data features. First is the presence of several 

distinct clusters of students. Progressing from the top of the heatmap to the bottom, the students 

in Cluster 10 appear to have been generally successful on exit slips at the start of the year, but to 

have experienced declines in performance as the year progressed. This may be related to the 

implementation of PARCC test prep around Day 130 of instruction, which is indicated by the 

vertical bar labeled “14;” in other words, these students may have been successful when matched 

with below-grade level content at the start of the year, but struggled when the launch of test prep 

forced them to work exclusively with grade level content. In contrast, the students in Cluster 11 

continued to experience significant success across the entire year, while the students in Cluster 

12 struggled across the entire year. It is worth noting, however, that the vast majority of students 

                                                
6 In order to maximize the function of the clustering algorithm, I removed from the dataset the 
120 students with the highest degree of missingness in lessons completed. This left 1073 students 
in the dataset for Figures 5, 6, 7, and 8 compared to 1193 for Figures 3 and 4. I tested for the 
possibility of bias by comparing the demographic indicators of the eliminated and non-
eliminated students, including school, grade level, gender, race/ethnicity, FRPL status, IEP 
status, and LEP status. I found that the eliminated students were generally similar to non-
eliminated students according to those indicators. 
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appear to have experienced both high and low scores on exit slips, indicating that each 

individual’s performance could vary greatly from day to day. In contrast to the method-based 

heatmaps in Figures 3 and 4, there does not appear to be a high degree of correlation between 

year-long outcomes and the clusters of longitudinal data. 

 Figure 5 also contains several distinct vertical bands in which significant amounts of data 

appear to be missing. These bands occur throughout the year, but are most common in the 

months of March, April, and May. This may be associated with the implementation of test prep 

during this portion of the year. For example, teachers may have had students “take a break” from 

using TBPP so that they could take practice tests or otherwise prepare themselves for PARCC. 

Data also appears more likely to be missing in June, when students may be more likely to engage 

in non-instructional activities like field trips or end-of-year celebrations. Interestingly, the 

vertical bands appear to be roughly consistent across all clusters, suggesting that patterns in exit 

slip scores were more determinative for the clustering algorithm than patterns of exit slip 

missingness.  
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Figure 5: Standardized exit slip scores displayed longitudinally 
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Figure 6 below also displays data longitudinally, but rather than standardized exit slip 

scores, the heatmap is clustered based on the content level of instruction. As in Figure 4, the 

content level is calculated as the gap between the content level assigned for the lesson and the 

student’s grade level, enabling apples to apples comparisons across grade levels. In this heatmap, 

the color red is associated with content that is assigned above the student’s grade level, while the 

color blue is associated with content that is assigned below the student’s grade level. 

 Like Figure 5, the clustergram in Figure 6 contains several distinct clusters of students. 

Cluster 15 represents students who spent most of the year working with on-grade level content, 

but moved to mostly above-grade level content in the final third of the year. Fittingly, the MAP 

growth data indicates that these students were slightly more likely to meet their annual MAP 

growth than was the student population as a whole. The students in Cluster 16 began the year 

working with mostly below-grade level content, but were assigned above-grade level content 

once test prep began, and for the most part continued to work with above-grade level content for 

the remainder of the year. In contrast, the students in Cluster 17 began the year working with 

below-grade level content, shifted to on-grade level content for test prep, then reverted to below-

grade level content once test prep was complete. Interestingly, a significant number of the 

students in Cluster 17 appear to have performed above the mean on the Fall 2015 MAP 

assessment and also met or exceeded expectations on the Spring 2016 PARCC assessment. This 

raises the question of why they were so consistently assigned below-grade level content 

throughout the year. 

 Figure 6 also contains a very clear marker for the period when test prep began, which I 

have labeled as vertical cluster 18. During this period, almost all students were assigned content 

that was on or above their grade level. This is evidence of how the policy constraint of high-
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stakes testing may have forced an unorthodox implementation of TBPP by requiring students to 

engage in on- or above-grade level content even if it is above their zone of proximal 

development.  

 
Figure 6: Content levels of instruction displayed longitudinally 
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Longitudinal exploration grouped by month. I also conducted a second set of 

longitudinal analyses with exit slip scores and content levels aggregated by month rather than 

displayed individually for each day. Figures 7 and 8 represent the results of those analyses. 

Figure 7: Standardized exit slip scores displayed longitudinally with monthly groupings 
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Figure 8: Content levels of instruction displayed longitudinally 
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Several interesting trends are apparent in Figures 7 and 8. First, the decision to aggregate 

the data by month rather than fully disaggregate for each day appears to improve the function of 

the clustering algorithm and support the generation of clearer and more distinct clusters. This is 

apparent in the longer horizontal lines in the dendrograms of Figures 7 and 8 compared to 

Figures 5 and 6, indicating a greater degree of similarity among the cases within each cluster. It 

is also apparent in the tighter correlation between the heatmap data and the PARCC data in both 

Figures 7 and 8. This relationship across multiple types of data suggests meaningful differences 

in the characteristics of students within each cluster. The decision to aggregate the data by month 

in Figures 7 and 8 also eliminates the “blotchiness” created by missing data in Figures 5 and 6, 

making the heatmaps easier to read and more visually accessible.  

The clusters of students in Figures 7 and 8 are similar to those found in Figures 5 and 6, 

but more distinctly demarcated. Students in cluster 19 began the year with high exit slip scores, 

but their performance gradually declined, perhaps in tandem with the assignment of increasingly 

challenging content. Students in cluster 20 experienced the highest exit slip scores across the 

year, while students in cluster 21 experienced relatively low exit slip scores in every month but 

September. The correlation between exit slip scores and PARCC performance in all three 

clusters reinforces the finding that exit slip scores are a useful measure of student learning. They 

are also a striking display of the reality that different groups of students appear to have widely 

divergent experiences with TBPP. For the students in cluster 20, experience with TBPP seems 

associated with significant success, as indicated by high average exit slip performance every 

month. Not surprisingly, these consistently high-performing students are also the most likely to 

be proficient on the end-of-year PARCC assessment. However, the students in Cluster 21 have 

very different experience with TBPP. They typically score lower on their exit slips, and are also 
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much less likely to pass the PARCC assessment. Their relatively poor exit slip performance 

exists in spite of the fact that TBPP is nominally designed to match each student to content at 

their “just right” zone of proximal development. This suggests either that TBPP is matching 

these students with content that is too difficult for them, or that there is some factor other than 

the difficulty of the content that makes it more difficult for them to succeed on exit slips than the 

students in Cluster 20.  

Figure 7 is also notable for the lack of any evidence of increasing performance over time 

as students and teachers gain familiarity with the program (Ready, et al. 2017; Rockoff, 2015). 

This is consistent with my HLM findings, which similarly found no increase in student 

performance as the year progressed. It may be that this improvement would occur in the second 

year of implementation. However, an examination of a second year of data unfortunately falls 

outside of the scope of this study.  

Figure 8 also features several distinct clusters of students. Individuals in cluster 22 began 

the year with content on or below grade level, but experienced rapid increases in the level of 

content assigned to them. Students in this cluster were most likely to pass the PARCC math 

assessment, and also appear most likely to achieve their MAP math growth targets. Students in 

clusters 23 and 25 also experienced some growth, but their content assignments did not rise as 

quickly or as high as the students in cluster 22. In contrast, the students in cluster 24 were 

assigned below grade-level content all year long, with the exception of March and April, where 

the effects of test prep on content assignment are clearly apparent. Students in cluster 24 were 

much more likely to fail the PARCC math assessment than all other students. Unlike in Figures 3 

and 4, there is a relatively low level of correlation between Fall MAP Math scores and the other 

measures reflected in the heatmap.  
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A final interesting feature of the data in Figure 8 is the significantly lower level of 

content assigned in September compared to the rest of the year. This suggests that the TBPP 

algorithm may intentionally begin the year by assigning all students below grade-level content to 

backfill missing skills or to boost their confidence with a new learning system. The very low 

level of content assigned in September is likely the root cause of the relatively high exit slip 

scores during that month in Figure 7. 

Summary of results from hierarchical cluster analysis and heatmaps. I generated 

several cluster analysis heatmaps to examine the relationships among exit slip results, content 

assignments, and year-long academic outcomes. All analyses grouped students into several 

distinct clusters, affirming both the heterogeneity of student experiences within the program and 

the overall usefulness of these analytical techniques when studying the data produced by 

technology-based learning models. The heatmaps suggest a high level of correlation among exit 

slip performance, Fall 2015 MAP score, and Spring 2016 PARCC level. The correlation between 

beginning-of-year and end-of-year mathematics performance is not surprising, given the well-

document difficulty of disrupting entrenched student achievement gaps. What is surprising, 

however, is that these measures should also be correlated with daily exit slip performance. TBPP 

is designed to match each student with daily content at his or her precise zone of proximal 

development, which should make every student equally likely to master that day’s exit slip, 

regardless of his or her starting level. However, this did not prove to be the case. 

The heatmaps suggest several additional interesting findings. The first of these is a high 

degree of correlation in students’ performance across all methods, with the exception that many 

students appeared more likely to be successful in LTPs than in other methods (this is aligned 

with the results from HLM). Additional findings include a higher frequency of below-grade level 
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content assignments within the OI, OP, and PP methods than within the LG, SG, TI, and LTP 

methods, especially for lower-performing students; the existence of a period in March, April, and 

May when students are not matched with below-grade-level content and are more likely to 

exhibit missing data; and an approximately month-long period at the start of the year when 

almost all students are assigned content far below their grade levels. 
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7. Discussion 

Effectively differentiating instruction is one of the most fundamental challenges of public 

education. Historically, the American education system has addressed this dilemma in two ways. 

The first is through tracking, in which students of different levels are sorted into homogeneous 

classrooms within schools. However, tracking has been criticized in recent decades for 

reinforcing inequalities based in race, ethnicity, and class, and it has recently fallen out of favor 

(Barr & Dreeben, 1983; Lee & Ready, 2009; Oakes, 1985). The second, more common strategy 

for addressing diverse student needs is classroom-level ability grouping in which teachers are 

given broad discretion to informally and formally assess students, organize them for instruction, 

and customize the content or pedagogical techniques used for each group (Barr & Dreeben, 

1983; Bidwell, 1965; Corno, 2008; Martinez, Schecther, & Borko, 2009; Pallas et al., 1994). 

Despite its prevalence in American schools, ability grouping has at least two significant 

shortcomings. The first is the tension between the varied needs of a diverse student body and 

policy mandates that all students meet a common, minimum level of proficiency; these mandates 

have become increasingly explicit and consequential over the last twenty years (Hyslop & Mead, 

2015; Manna, 2011). The second is the significant demand that ability grouping places upon the 

time, energy, and skill of classroom teachers. The work of continually assessing and regrouping 

is incredibly difficult, and can require that teachers plan multiple lessons for every day of 

instruction. There is evidence that the challenges of differentiating instruction are a significant 

contributor to teacher burnout and attrition (Arnett, 2016; Beteille & Loeb, 2009; Carnoy & 

Levin, 1985; National Mathematics Advisory Panel, 2008; TNTP, 2014). 

Some educators, policymakers, and philanthropists have recently argued that new 

technologies offer the potential to more effectively support teachers in delivering differentiated 
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instruction that meets the unique needs of every learner (Cavanagh, 2014; Herold, 2016a; Horn 

& Staker, 2014). However, while some prior research has explored the overall effects of these 

programs, very little work has been done to describe the ground-level reality of how the behavior 

of students and teachers affects, and is affected by, these programs in the context of daily 

instruction. My research addresses this gap in the research literature by examining the 

implementation of a technology-based personalized learning program in five schools to better 

understand the complex relationships among school-level, class-level, student-level, and lesson-

level factors and both daily and annual student learning outcomes. I examine these relationships 

using a variety quantitative methods, including hierarchical linear modeling, cluster analysis, and 

data visualization heatmaps.  

I also examine the degree to which the day-to-day, ground-level implementation of TBPP 

represent an authentic departure from the traditional technology of schooling. Traditional forms 

of instructional delivery have proven exceedingly difficult to disrupt over the last hundred years, 

with successive waves of reform typically crashing on the rocks of entrenched organizational 

norms before receding with little or no trace (Carnoy & Levin, 1985; Cohen, 1990; Cuban, 1986, 

1990, 1993; Elmore, 1996, 2010; Tyack and Cuban, 1995). My research examines the prospect 

that technology-based personalization may represent a divergence from this historical pattern, or 

whether teachers and students are merely engaging in symbolic reform while continuing to 

exercise traditional instructional patterns. 

Findings 

This study supports four main findings: (a) TBPP succeeds in altering the technical core 

of instruction in several fundamental ways; (b) policy and logistical constraints limit TBPP’s 

ability to reform the technical core of instruction to the degree that it aspires; (c) students who 
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enter the program as already higher-performing are more successful on daily exit slips than 

students who enter the program with lower performance; and (d) the quantitative methods used 

in this paper represent useful and replicable tools for exploring the data produced by technology-

based and personalized models. 

Meaningful reform of the instructional core. I find that TBPP succeeds in altering the 

technical core of instruction in several meaningful ways. For example, whereas in traditionally 

organized instruction teachers work with a common group of students for an entire year or 

semester, in TBPP teachers work with multiple distinct, non-repeating groups of students each 

day. Whereas in traditionally organized instruction teachers are expected to teach a single, 

clearly defined scope of content, in TBPP teachers are expected to teach a wide array of content 

ranging from 2nd grade to high school math. Finally, while traditionally organized instruction is 

characterized by a high degree of teacher control over instructional content and method, teachers 

in TBPP have no ability to influence the assignment of students, content, or instructional 

methods. These are very significant changes. The literature on instructional reform is littered 

with failed reforms that only glancingly or symbolically alter the fundamental interactions 

among students, teachers, and content (Cohen, 1990; Cuban, 1986; Elmore, 2006, 2010; Honig 

& Hatch, 2004; Tyack & Cuban, 1995). TBPP appears to have succeeded where they failed in 

authentically altering the technical core of teaching and learning. 

 However, while TBPP succeeds in reducing the teacher’s role as the ultimate arbiter and 

mediator of knowledge, it does not shift that power towards students, as has been encouraged by 

some proponents of technology-based personalization (Childress & Amrofell, 2016). Instead, 

TBPP shifts power from the teacher to the algorithm while leaving students relatively powerless 

to determine the course of instruction. This represents a significant divergence from earlier 
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reforms such as the Dalton plan, which relied heavily on student choice, and a direct repudiation 

of the learning models advanced by theorists such as John Dewey and Maria Montessori. Rather 

than direct their own learning, students in TBPP have their learning directed by an algorithm. 

Rather than choose their own goals through self-guided exploration and discovery, students are 

pushed toward a common, uniform level for excellence through instructional assignments that 

are dictated by their results on multiple-choice assessments of procedural skill. While ardent 

advocates of technology-based personalization argue that it will empower students to “choose 

your instructional method,” the practical reality is that TBPP affords neither teachers nor 

students the ability to choose the content or methods in which teaching and learning will occur. 

 This shift in agency from teacher to algorithm manifests itself in the data in several 

interesting ways. The first is the small but statistically significant negative effective size for 

certified math teachers (CMTs) compared to teacher assistants (TAs). While this comparison is 

only possible for the OI, OP, PP, LG, and SG methods, it still comes as a bit of a surprise; one 

would intuitively assume that even in these methods, students would benefit from being 

supervised by math teachers with deep knowledge of the content under study. However, the data 

indicates that this is not the case, and that students perform equally well or better when 

supervised by teachers with lesser mathematical training and ability. This may reflect the 

limitations that TBPP places on teachers’ ability to build and exercise relevant pedagogical 

content knowledge. A TBPP teacher may be told at 4:30pm that their instructional load for the 

next day will include an LG on 4th grade fractions, a TI on 9th grade algebra, another TI on 5th 

grade geometry, and a OI in which students are studying fifteen unique skills ranging from 3rd 

through 8th grade. It is extremely unlikely that the teacher would have the time to refresh their 

understanding of all of these concepts, prepare for the most common student misunderstandings, 
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and proactively plan for how to respond to each of them. Faced with such a dizzying array of 

content, trained CMTs may behave similarly to TAs with little or no experience in math 

instruction. Previous research has found that that pedagogical content knowledge is both domain-

specific and associated with student achievement (Ball, 1990, 1997; Ball et al., 2008; Hill et al., 

2005; Shulman, 1987). By forcing CMTs to teach multiple subjects with little preparation, TBPP 

may be negating the relevance of their pedagogical content knowledge in ways that suppress 

student outcomes. 

 This finding is very much in keeping with the theory of action suggested by many 

proponents of technology-based personalization (Arnett, 2016; Christensen, 2013; Christensen, 

et al. 2008; Horn & Staker, 2014). Many of these individuals suggest that schools would become 

more efficient and students better served were the role of the teacher more effectively 

differentiated, and individuals with varying levels of skill hired to engage in custom-tailored 

tasks at an efficient cost. For example, were TBPP to utilize CMTs exclusively for long-term 

LTP instruction while using lower-paid aides to supervise the OI, OP, and PP methods, it might 

produce equivalent or improved instructional outcomes at lower cost compared to traditional 

instructional models. Indeed, this is the exact approach utilized by instructional models like the 

Summit Personalized Learning Platform, which splits students’ time between complex, long-

term, real-world projects supervised by content-expert teachers and computer-based practice of 

basic skills while supervised by lower-paid instructional assistants (Osborne, 2016).  

It is also interesting to note the significantly higher exit slip outcomes on the LTP method 

than for all other methods. The LTP method is unique in that it is the only method in which the 

teacher, students, and content remain consistent for more than one day. By the time that students 

take their exit slip on the second or third day of the LTP, teachers will have had several days to 
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build or strengthen relationships, informally assess students’ knowledge of the material, and 

adjust instruction in response. In all other methods, teachers have only a single, thirty-five 

minute period to address the entire skill. LTP is also the only method in which teachers have the 

ability to deliver instruction, review data, then come back the next day to address specific 

misconceptions or target individually struggling students. It is striking that students appear to be 

most successful in the method in which teachers are best able to engage in these traditional 

instructional tasks. 

However, the fact that the LTP method is associated with higher student outcomes than 

other methods does not necessarily suggest that traditional instruction is universally superior to 

technology-based, personalized models like TBPP. While the LTP method is more similar to 

traditional instruction than the other six TBPP methods, it features significantly smaller group 

sizes and far greater student homogeneity than a typical classroom, neither of which would be 

possible outside the context of the larger TBPP model. Any comparisons with traditional 

instruction are only suggestive and circumstantial; future studies would need to directly compare 

data from TBPP and traditional classrooms prior to drawing any firm conclusions about 

comparative effects. 

 Policy and logistical constraints. My second major finding is that policy and logistical 

constraints limit TBPP’s ability to reform the technical core of instruction to the degree that it 

aspires. This finding manifests itself most clearly in the data related to test prep in February, 

March, and April. While TBPP’s intention is that students engage only with content at their 

unique zone of proximal development, the clear purple vertical bar in the month of March in the 

longitudinal heatmap in Figure 8 (p. 110) demonstrates that many students are pushed to work 

with grade-level content around the time of PARCC testing. In addition, the pattern of students’ 
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exit slip results suggests that this push toward grade-level content is associated with a decrease in 

student outcomes. The decision to focus on grade-level standards during the spring is not an 

inherent part of TBPP’s design; on the contrary, it was imposed unwillingly upon the non-profit 

that manages TBPP by school and district administrators who feared the consequences of low 

PARCC scores. The policy constraints posed by high-stakes standardized testing clearly inhibit 

the ability of TBPP to function as intended during these spring months, a finding that is in 

keeping with other examples in the literature (Hyslop & Mead, 2015, Murphy et al, 2014a). In 

addition, the higher incidence of missing exit slips in March, April, and May could suggest 

intermittent implementation of TBPP due to teachers replacing TBPP instruction with practice 

tests, test prep workbooks, or other activities specifically designed to maximize performance on 

the PARCC assessment. In other words, the policy constraint posed by high-stakes testing may 

not only be incentivizing schools to reduce the personalization of content for part of the year, but 

also to partially abandon the use of TBPP altogether. 

 This is a powerful example of coercive isomorphism (DiMaggio & Powell, 1983; Meyer 

& Rowan 1977, 1978). The imposition of government-mandated assessments of student 

achievement, paired with the threat of sanctions or school closure in the case of low results, 

creates a powerful incentive for educators to abandon TBPP’s model of skill-based 

differentiation and instead confront all students with the common set of grade-level standards 

that will appear on the PARCC exam (Hyslop & Mead, 2015; Pane et al., 2015; 2017). In other 

words, while TBPP may succeed in authentically reforming the technical core of instruction 

during most of the year, that reform seems to revert to mere symbolism during the window of 

time when the pressures of test-based accountability are most acute.  
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 Logistical constraints may also inhibit the ability of TBPP to fully personalize content to 

students. As indicated by Table 9 (p. 88), nearly half of instructional assignments fell outside of 

the zone of proximal development suggested by students’ performance on the Fall MAP math 

assessment. The heatmap of content levels within each instructional method in Figure 4 (p. 102) 

suggests that it may be easier to match students with far-below grade level content in the OI, OP, 

and PP methods than in the other four methods. This could be attributable to the fact that the OI, 

OP, and PP methods do not require any other students to be simultaneously working on the same 

skill. In contrast, assigning a student to LG, SG, TI, or LTP typically requires between five and 

fifteen other students who are also ready to be matched to the same skill. To give a practical 

example, if only two students need practice with a specific 5th grade geometry skill, it is 

logistically impossible for them to ever work on that skill in a TI, LTP, LG, or SG, since there 

will not be enough peer students to work on it with them. Even with more than one hundred 

students in a class, it may simply be impractical to match every student with his or her ideally 

leveled content every day. This logistical constraint likely inhibits the ability of TBPP to offer 

the fully personalized experience that it aspires to create. 

In addition, the relatively high prevalence of purple coloring for the LTP method in 

Figure 4 suggests that it may be particularly difficult to match students with content in their zone 

of proximal development for LTP lessons. This is true for both low- and high-performing 

students. Students in the high-performing cluster 7 were mostly assigned above-grade level 

content in the first six methods, but their LTP assignments were more likely to be colored purple, 

indicating that they worked on comparatively lower-level skills within LTP lessons. Conversely, 

lower-performing students in cluster 8 also exhibit a mismatch between the coloring of their 

content assignments for LTP lessons compared to the other six methods, but in the opposite 
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direction, with non- LTP lessons predominantly colored blue for “below-grade-level” while LTP 

lessons feature a higher prevalence of purple coloring. The LTP method’s multi-day nature likely 

makes it particularly difficult to generate groups of students who all need the same above- or 

below-grade level skill for an extended period of study. Again, the uniqueness of the LTP 

method is apparent; the fact that it is most similar to traditional forms of instruction means that it 

also least reflects the radical personalization at the heart of the TBPP model. 

 Unequal experiences and outcomes. My third major finding is that students who enter 

the program as already higher-performing are more successful on daily exit slips than students 

who enter the program with lower performance. This is apparent in the HLM results, which 

display a statistically significant positive relationship between Fall MAP math score and exit slip 

outcome, suggesting that students who enter the year with more mathematical ability are more 

likely to be successful on exit slips each day. It is also apparent in the heatmaps, which group 

students into clear clusters based on their performance on exit slips. The students who 

consistently perform higher on daily exit slips are also more likely to pass the PARCC exam, and 

vice versa. While this finding is to be expected in a typical instructional model, it is unexpected 

within TBPP, which is designed to match each student with content at his or her unique zone of 

proximal development; if every student is working on content that is at the exact right difficulty 

for him or her, then they should all be equally likely to be successful, regardless of their 

mathematical skills at the start of the year. 

 One potential root cause for this data trend could be the presence of significant peer 

effects in the LG, SG, and LTP methods, indicating that students typically score higher on exit 

slips when they are assigned to work alongside higher-performing students. This peer effect is 

particularly meaningful given that these are the three methods in which students have the most 



 

 122 

opportunities to interact with other students in the course of learning. Given that the TBPP 

algorithm is explicitly designed to organize students into homogeneous groups, TBPP could be 

understood as a form of tracking that accelerates higher-performing students while denying 

lower-performing students the opportunity to learn from more mathematically capable peers 

(Barr & Dreeben, 1983; Lee & Ready, 2009; Philip & Olivares-Pasillas, 2016; Wenglinsky, 

2005). The interaction effects between a student’s Fall MAP score and the LG, SG, TI, and LTP 

methods lend further support for this theory. So does the heatmap in Figure 3 (p. 99), which 

seems to suggest that higher-performing students perform particularly well on exit slips when 

working within the LTP method. 

A second root cause of the inequality in outcomes could be that the significant autonomy 

afforded to students by TBPP increases the importance of non-cognitive skills like motivation 

and grit, which could be more commonly found among higher-performing than lower-

performing students. This would be in keeping with some of the extant literature related to on-

task behavior in personalized learning environments, as well as the broader literature on non-

cognitive skills and “success at school” factors in general (Baker and Gowda, 2010; Bowers, 

2007, 2011; Brookhart et al., 2016; Duckworth, 2007; Murphy et al., 2014a; Rodrigo, Baker, 

Ryan, & Rossi, 2013). In other words, a student who is more diligent or cares more about 

education may score higher on the Fall MAP math exam, but may also be more motivated to 

work hard in student-directed methods regardless of his or her mathematical skill. The relevance 

of non-cognitive skills is supported by the fact that Fall MAP ELA scores are associated with 

exit slip performance with a statistically significant effect size roughly half that of Fall MAP 

math. This indicates that there is some underlying construct other than mathematical ability that 

is assessed by the MAP test and associated with exit slip performance. 
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Regardless of the cause, there does seem to be evidence of a “Matthew Effect” associated 

with TBPP in which students who enter the program as higher-performing experience greater 

daily success than students who enter the program as lower-performing (Merton, 1988). The 

Matthew Effect derives its name from a biblical verse from the Book of Matthew stating that 

“For to every one who has will more be given, and he will have abundance; but from him who 

has not, even what he has will be taken away.” While the daily exit slip performance of students 

participating in TBPP notably does not appear to be associated with racial/ethnic background, 

gender, disability status, or English language learner status, there are significant differences 

based on students’ Fall Math MAP scores, and to a lesser extent their Fall Reading MAP scores. 

I do not have access to data from a control group that would allow me to draw conclusions about 

whether TBPP increases inequality compared to traditional instruction. However, my findings do 

suggest that a rigorous program evaluation using a sophisticated method for causal inference 

such as comparative interrupted time series could be a fruitful avenue for future research 

(Bloom, 2003; Shadish, Cook, & Campbell, 2002). 

In interpreting this finding, I should stipulate that inequality is not necessarily an 

unabashed evil if it is caused primarily by accelerating the growth of high-performing students. 

One of the key arguments in favor of technology-based personalization is that it allows curious, 

diligent, and intelligent students to race ahead and meet their full potential rather than languish 

bored in a class that moves too slowly for them. One could imagine a scenario in which TBPP 

promotes the growth of high-performing students in a way that expands inequality across 

students while having only very small negative effects on low-performing students, or even no 

negative effect at all. This is a classic example of the kind of value-laden trade-off that is 

endemic to both education and the social sciences more broadly (Labaree, 1997; Carnoy & 
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Levin, 1985; Stone, 2002). How should we weigh the importance of individual achievement vs. 

collective achievement, autonomy vs. equality, or high-performers meeting their full potential vs. 

low performers not being left behind? While quantitative analyses can provide useful evidence 

for evaluating the magnitude and direction of these trade-offs, the solutions will always involve 

philosophical questions that cannot be resolved through statistical analysis alone. 

 Usefulness of data methods. My fourth and final major finding is the overall usefulness 

of the methodological approaches used in my dissertation for exploring the broad, deep, and 

diverse data produced by personalized learning programs. The relationships between daily exit 

slip scores and end-of-year outcomes on the PARCC and NWEA MAP assessments suggest that 

exit slips are a useful measure of student learning, and that they are worthy of consideration for 

similar research in the future. Furthermore, the coherence and comprehensibility of my results 

suggest that exploring the relationships among diverse instructional variables and daily exit slip 

data through hierarchical linear modeling and hierarchical cluster analysis can yield meaningful 

insights into how the complex interactions among teachers, students, and content relate to 

variations in student learning. 

This has significant implications even outside the context of technology-based 

personalization. Educational research is often limited by the difficulty of precisely associating 

instructional inputs with meaningful outcome measures; graduation rates and standardized test 

scores are the most commonly used metrics, but the fact that they are only gathered annually 

means that it can be difficult to disentangle causality among the myriad of complex factors that 

affect student learning. In contrast, personalized learning programs offer the ability to generate 

datasets in which daily student outcomes are integrated with program delivery in a way seldom 

encountered in educational research (Krumm et al., 2018; Natriello, 2012, 2013). The growing 
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prevalence of technology-based instructional models means that the pace of creation for these 

types of datasets is likely to accelerate in the future. This paper presents several innovative 

applications of established statistical techniques that would meaningfully aid researchers in 

exploring these new and very valuable datasets (Horn & Freeland Fisher, 2016; Natriello, 2012, 

2013). 

  While hierarchical linear modeling is relatively common within educational research, it 

is most typically used to nest students within classes, classes within schools, or both 

(Raudenbush & Bryk, 2002; Means et al., 2010; Murphy et al, 2014a; Ready & Wright, 2011; 

Singer & Willett, 2003; Woltman et al., 2012; Wood et al., 2017). Nesting lessons within 

students represents a relatively novel application of this familiar quantitative technique. My use 

of hierarchical linear modeling in this paper is most similar to previous studies utilizing 

longitudinal data, since these studies also involve nesting multiple cases within individuals. 

However, the use of hierarchical linear modeling to explore the associations among multiple 

instructional variables and daily student outcomes represents an extension of this work to a new 

context (Singer & Willett, 2003). 

Although some educational research over the last ten years has utilized hierarchical 

cluster analysis and data visualization heat maps, these techniques have not been commonly 

combined when studying schools or students (Bowers, 2007, 2010; Bowers, et al., 2016; Krumm 

et al., 2018). However, my dissertation reinforces previously published studies that argue for the 

usefulness of these descriptive techniques when exploring educational data. Hierarchical cluster 

analysis and heatmap data visualization offer several distinct advantages in comparison to 

regression-based statistical analyses. First, they perform well when exploring data that are 

multicollinear, interdependent, and nested, as is frequently the case in educational contexts. 
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Second, their visual nature makes them highly accessible to teachers, administrators, and 

policymakers; these techniques are sometimes described as “quantitative phenomenology” 

because they allow a rich description of individuals patterned in a way that enables us to see 

relationships and test hypotheses (Bowers, et al., 2017). Finally, their ability to reveal nuances 

across individual cases or groups of students makes them uniquely well suited to exploring data 

produced by personalized programs. Technology-based personalization offers the prospect of 

providing unique educational experiences custom-fitted to the needs of individual children. It 

seems fitting to analyze data from these programs using a technique that enables disaggregation 

at the student level rather than assuming a common effect, as is the case with regression analysis. 

The ability of data visualization heatmaps to enable a quick assessment of distributions, outliers, 

and clusters makes it a strong fit for studying educational models that are explicitly designed to 

create customized and non-standard student experiences.   

Issues and Limitations 

 We should be mindful of several important limitations when interpreting the results of 

this study. The first is the significant diversity among instructional models utilizing technology-

based personalization, which may limit the applicability of these findings to other contexts. The 

rapid pace of innovation among blended and personalized models means that there can be 

significant diversity in experiences across models, or even across schools or classrooms utilizing 

the same model (Brodersen & Melluzzo, 2017; Cavanagh, 2014; Horn & Staker, 2014; Murphy 

at al., 2014a; Pane et al., 2015; Picciano, 2014). While TBPP is typically described as one of the 

archetypical current examples of technology-based personalization, several of its key features are 

relatively unique, including the use of automated algorithms to make daily scheduling decisions 

for teachers, the inclusion of multiple instructional methods, and the highly comprehensive 
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nature of the program. It is unclear to what degree the findings from this study may be applicable 

to different technology-based personalized models, such as the Summit Personalized Learning 

Platform or the lab rotation model utilized by Rocketship schools (Childress & Amrofell, 2016; 

Horn & Staker, 2014; Osborne, 2016). 

  A second threat to the external validity of these findings is that they encompass only a 

single district and a single year of data. If there were some factor that made this district unique, 

or some reason that the 2015-16 academic year were different than a typical academic year, it 

could provide a bias that would reduce our ability to generalize these findings across other 

contexts. Of particular concern is the fact that I studied TBPP in its first year of implementation 

in this district. The radical differences between TBPP and traditionally organized instruction 

could create a significant learning curve in the first year of implementation, meaning that the 

2015-16 academic year might not be representative of a typical year for the program. While there 

is some evidence for this type of “implementation dip” in the literature, it is worth noting that 

student performance did not seem to improve over the course of the 2015-16 academic year as 

students and teachers gained familiarity with the model (Murphy et al, 2014a; Rockoff, 2015). 

 A third issue was my decision to exclude the lessons for which exit slip data was missing, 

which may have created a bias that could interfere with the validity of the findings. While 

statistical comparisons of excluded and non-excluded lessons do not indicate any significant 

concerns, the varied and unknown causes for missing exit slips are still worth noting. This is also 

true of my decision to exclude the 3.6% of students who completed fewer than half of their exit 

slips. In contrast, my ability to draw upon data from all students enrolled in the program rather 

than taking a representative sample should increase the validity of the study, as well as increase 

the overall power of the statistical analyses.  
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 Finally, the short, multiple-choice format of exit slips means that they are more likely to 

evaluate procedural and didactic skills than more complex skills related to theoretical 

understanding or evaluation. This may create a bias in my results if TBPP’s ability to build those 

deeper skills were uncorrelated with its ability to build the procedural skills that exit slips are 

designed to assess. While this represents a limitation in my study, it may also represent a 

limitation within the TBPP model itself. The TBPP algorithm uses exit slips and the NWEA 

MAP math assessment as proxies for learning. However, both of these assessments are 

composed entirely of multiple choice questions, and students are not required to engage in 

collaboration, argumentation, or oral or written communication to complete them. Researchers 

like Richard Elmore and Deborah Ball have argued throughout their careers that “knowing math” 

means more than just getting the right answer or understanding relevant procedural rules, but 

also knowing why a rule is true and how it connects with other big mathematical ideas. 

Unfortunately, the assessment measures used by TBPP may be inadequate to fully assess those 

essential competencies. 

Implications for Future Research 

This study suggests several valuable avenues for future research. The most 

straightforward of these is to broaden my dataset to include data from the implementation of 

TBPP in other districts, or within this same district across multiple years. Expanding the scope of 

the research in this way could help to address some of the concerns related to external validity 

that arise when studying a program in only a single specific context. Similarly, it would be very 

useful to apply the analytic techniques from this dissertation to other programs utilizing 

technology-based personalization. Because the data from other programs is probably structured 

differently, it seems unlikely that the data could or should be pooled. However, it would be very 
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useful to apply similar analytic techniques and research questions to data produced by alternate 

technology-based personalized programs in order to explore whether the key findings from this 

study are also true in those contexts. 

A second avenue for future research could be to complement the quantitative research 

utilized in this study with qualitative research, including classroom observation and interviews 

with teachers or students. I suggest in this paper that TBPP may accelerate inequality by enabling 

motivated or high-performing students to race ahead of their lower-performing peers; interviews 

with those students could help confirm or refute those findings. Similarly, observing lower-

performing students when working within methods that provide a high degree of autonomy could 

illuminate whether their comparatively low performance on exit slips is attributable to off-task 

behavior or authentic struggles with math content. In addition, my theory that TBPP inhibits 

teachers’ ability to build and exercise pedagogical content knowledge could be confirmed or 

undermined by interviewing teachers about their experience with the program, and particularly 

by asking whether they feel that TBPP affects their ability to effectively prepare for instruction 

when compared to more traditional forms of schooling. Given that TBPP relieves teachers from 

needing to complete many of the traditional tasks of teaching, such assessing and grouping 

students, it could also be useful to explore teachers’ perceptions of how TBPP affects their 

workload and the overall sustainability of their jobs. It would also be very interesting to collect 

hard data on the attrition of teachers utilizing TBPP compared to traditional instruction to 

explore whether reducing teachers’ scope of work affects their likelihood of departing from the 

profession. 

Future research could also more deeply explore the relationships among student learning 

and various teacher characteristics, including teachers’ pedagogical content knowledge, past 
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experiences, and training. For example, it would be very interesting to explore whether a former 

5th grade teacher is more effective when teaching 5th grade skills than 9th grade Algebra content 

on which he or she has never been formally trained. Were this intuitive finding to be borne out in 

the data, it would provide further evidence for the importance of pedagogical content knowledge 

as a key determinant of students’ learning outcomes. Similarly, it would be useful to explore 

whether there are consistent differences across teachers in their effectiveness when teaching 

particular mathematical content areas, such as algebra, geometry, or ratios and proportions, and 

whether those differences were correlated with teacher experience or interest. Were the data to 

indicate significant teacher-level variety in effectiveness based on content area, it would suggest 

that TBPP would be more effective were its algorithm to take into account teachers’ unique 

abilities when generating daily instructional assignments. 

Finally, future research could attempt to apply additional methods from the fields of 

learning analytics and educational data mining to confirm, add nuance to, or expand upon the 

findings from this study. The last two decades have witnessed an explosion in new techniques for 

exploring “big data,” many of which have been applied to the field of education through the 

parallel fields of Educational Data Mining and Learning Analytics (Agasisti & Bowers, 2017; 

Bowers, 2017; Siemens & Baker, 2012). Although techniques like Bayesian Knowledge Tracing, 

Correlation Mining, Association Rule Mining, and Sequential Pattern Mining are beyond the 

purview of this paper, they and techniques like them could represent a useful extension of the 

work that I have undertaken in this dissertation (Baker, 2015; San Pedro et al, 2013; Snow et al., 

2016). 

Policymakers and researchers are eager to explore the outcomes from instructional 

models utilizing technology-based personalization. However, they risk missing important data 
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trends if they limit their exploration to end-of-year outcomes on state-mandated standardized 

assessments. This paper demonstrates the usefulness of also investigating the student- and 

lesson-level factors that affect learning at a daily level. Continuing this avenue of research may 

generate insights into not only technology-based personalization, but the phenomenon of 

teaching and learning more broadly.    
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Appendix 
 

Chart 4: Percentage of Lessons with Completed Exit Slips by Student 

 

 

Chart 5: Distribution of Standardized Exit Slip Scores 
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Chart 6: Distribution of Standardized Mean Group MAP Scores 

 
 
 
 
 
Chart 7: Distribution of Content Gap 
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Chart 8: Distribution of Standardized Fall MAP Score 

 
 
 
 
 
 
 
 
Chart 9: Distribution of Centered Group Size 

 

 


