52 research outputs found

    Incorporating knowledge uncertainty into species distribution modelling

    Get PDF
    Monitoring progress towards global goals and biodiversity targets require reliable descriptions of species distributions over time and space. Current gaps in accessible information on species distributions urges the need for integrating all available data and knowledge sources, and intensifying cooperations to more effectively support global environmental governance. For many areas and species groups, experts can constitute a valuable source of information to fill the gaps by offering their knowledge on species-environment interactions. However, expert knowledge is always subject to uncertainty, and incorporating that into species distribution mapping poses a challenge. We propose the use of the dempster–shafer theory of evidence (DST) as a novel approach in this field to extract expert knowledge, to incorporate the associated uncertainty into the procedure, and to produce reliable species distribution maps. We applied DST to model the distribution of two species of eagle in Spain. We invited experts to fill in an online questionnaire and express their beliefs on the habitat of the species by assigning probability values for given environmental variables, along with their confidence in expressing the beliefs. We then calculated evidential functions, and combined them using Dempster’s rules of combination to map the species distribution based on the experts’ knowledge. We evaluated the performances of our proposed approach using the atlas of Spanish breeding birds as an independent test dataset, and further compared the results with the outcome of an ensemble of conventional SDMs. Purely based on expert knowledge, the DST approach yielded similar results as the data driven SDMs ensemble. Our proposed approach offers a strong and practical alternative for species distribution modelling when species occurrence data are not accessible, or reliable, or both. The particular strengths of the proposed approach are that it explicitly accounts for and aggregates knowledge uncertainty, and it capitalizes on the range of data sources usually considered by an expert

    Beyond Academia: A case for reviews of gray literature for science-policy processes and applied research

    Get PDF
    Gray literature is increasingly considered to complement evidence and knowledge from peer-reviewed literature for science-policy processes and applied research. On the one hand, science-policy assessments need to both consider a diversity of worldviews, knowledge types and values from a variety of sectors and actor groups, and synthesize policy-relevant findings that are salient, legitimate and credible. On the other hand, practitioners and scholars conducting applied research, especially in environmental and health-related fields, are affected by the time lag and documented biases of academic publication processes. While gray literature holds diverse perspectives that need to be integrated in science-policy processes as well as practical evidence unfiltered by commercial publication processes, its heterogeneity has made it challenging to access through conventional means for a literature review. This paper details one endeavor within the Values Assessment of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) to review gray literature using Google’s Programmable Search Engine. In the absence of a standardized approach, we build on a limited experiential knowledge base for reviewing gray literature and report on the potential applicability of our strategy for future reviews. Our results contrast the findings of our parallel review of academic literature, underlining the importance of mobilizing different knowledge bases in science-policy assessments, evidence-based practices, and applied research

    Holocene wildfire regimes in forested peatlands in western Siberia: interaction between peatland moisture conditions and the composition of plant functional types

    Get PDF
    Wildfire is the most common disturbance type inboreal forests and can trigger significant changes in forestcomposition. Waterlogging in peatlands determines the degree of tree cover and the depth of the burnt horizon associated with wildfires. However, interactions between peatland moisture, vegetation composition and flammability, andfire regime in forest and forested peatland in Eurasia remain largely unexplored, despite their huge extent in borealregions. To address this knowledge gap, we reconstructedthe Holocene fire regime, vegetation composition, and peatland hydrology at two sites located in predominantly lighttaiga (Pinus sylvestris Betula) with interspersed dark taigacommunities (Pinus sibirica, Picea obovata, Abies sibirica)in western Siberia in the Tomsk Oblast, Russia. We foundmarked shifts in past water levels over the Holocene. Theprobability of fire occurrence and the intensification of firefrequency and severity increased at times of low water table(drier conditions), enhanced fuel dryness, and an intermediate dark-to-light taiga ratio. High water level, and thus wetpeat surface conditions, prevented fires from spreading onpeatland and surrounding forests. Deciduous trees (i.e. Betula) and Sphagnum were more abundant under wetter peatland conditions, and conifers and denser forests were moreprevalent under drier peatland conditions. On a Holocenescale, severe fires were recorded between 7.5 and 4.5 ka withan increased proportion of dark taiga and fire avoiders (Pinussibirica at Rybnaya and Abies sibirica at Ulukh–Chayakh)in a predominantly light taiga and fire-resister communitycharacterised by Pinus sylvestris and lower local water level.Severe fires also occurred over the last 1.5 kyr and were associated with a declining abundance of dark taiga and fireavoiders, an expansion of fire invaders (Betula), and fluctuating water tables. These findings suggest that frequent,high-severity fires can lead to compositional and structuralchanges in forests when trees fail to reach reproductive maturity between fire events or where extensive forest gaps limitseed dispersal. This study also shows prolonged periods ofsynchronous fire activity across the sites, particularly duringthe early to mid-Holocene, suggesting a regional imprint ofcentennial- to millennial-scale Holocene climate variabilityon wildfire activity. Humans may have affected vegetationand fire from the Neolithic; however, increasing human presence in the region, particularly at the Ulukh–Chayakh Mireover the last 4 centuries, drastically enhanced ignitions compared to natural background levels. Frequent warm and dryspells predicted by climate change scenarios for Siberia inthe future will enhance peatland drying and may convey acompetitive advantage to conifer taxa. However, dry conditions will probably exacerbate the frequency and severityof wildfire, disrupt conifers’ successional pathway, and accelerate shifts towards deciduous broadleaf tree cover. Furthermore, climate–disturbance–fire feedbacks will acceleratechanges in the carbon balance of boreal peatlands and affecttheir overall future resilience to climate chang

    Utilizing multi-objective decision support tools for protected area selection

    Get PDF
    Establishing and maintaining protected areas (PAs) is a key action in delivering post-2020 biodiversity targets. PAs often need to meet multiple objectives, ranging from biodiversity protection to ecosystem service provision and climate change mitigation, but available land and conservation funding is limited. Therefore, optimizing resources by selecting the most beneficial PAs is vital. Here, we advocate for a flexible and transparent approach to selecting PAs based on multiple objectives, and illustrate this with a decision support tool on a global scale. The tool allows weighting and prioritization of different conservation objectives according to user-specified preferences as well as real-time comparison of the outcome. Applying the tool across 1,346 terrestrial PAs, we demonstrate that decision makers frequently face trade-offs among conflicting objectives, e.g., between species protection and ecosystem integrity. Nevertheless, we show that transparent decision support tools can reveal synergies and trade-offs associated with PA selection, thereby helping to illuminate and resolve land-use conflicts embedded in divergent societal and political demands and values.publishedVersio

    Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes

    Get PDF
    Abstract Climate change and other anthropogenic drivers of biodiversity change are unequally distributed across the world. Overlap in the distributions of different drivers have important implications for biodiversity change attribution and the potential for interactive effects. However, the spatial relationships among different drivers and whether they differ between the terrestrial and marine realm has yet to be examined. We compiled global gridded datasets on climate change, land-use, resource exploitation, pollution, alien species potential and human population density. We used multivariate statistics to examine the spatial relationships among the drivers and to characterize the typical combinations of drivers experienced by different regions of the world. We found stronger positive correlations among drivers in the terrestrial than in the marine realm, leading to areas with high intensities of multiple drivers on land. Climate change tended to be negatively correlated with other drivers in the terrestrial realm (e.g. in the tundra and boreal forest with high climate change but low human use and pollution), whereas the opposite was true in the marine realm (e.g. in the Indo-Pacific with high climate change and high fishing). We show that different regions of the world can be defined by Anthropogenic Threat Complexes (ATCs), distinguished by different sets of drivers with varying intensities. We identify 11 ATCs that can be used to test hypotheses about patterns of biodiversity and ecosystem change, especially about the joint effects of multiple drivers. Our global analysis highlights the broad conservation priorities needed to mitigate the impacts of anthropogenic change, with different priorities emerging on land and in the ocean, and in different parts of the world.Peer reviewe

    Chapter 1: Assessing a planet in transformation: Rationale and approach of the IPBES Global Assessment on Biodiversity and Ecosystem Services

    Get PDF
    The challenges of mitigating and adapting to climate change, achieving inclusive food, water, energy and health security, addressing urban vulnerabilities, and the unequal burdens of nature deterioration, are not only predicaments on their own right. Because they interact, often exacerbating each other, they create new risks and uncertainties for people and nature. It is now evident that the rapid deterioration of nature, including that of the global environmental commons on land, ocean, atmosphere and biosphere, upon which humanity as a whole depends, are interconnected and their cascading effects compromise societal goals and aspirations from local to global levels. Growing efforts to respond to these challenges and awareness of our dependence on nature have opened new opportunities for action and collaboration towards fairer and more sustainable futures.The global assessment on biodiversity and ecosystem services (GA) has been designed to be a comprehensive and ambitious intergovernmental integrated assessment of recent anthropogenic transformations of Earth?s living systems, the roots of such transformations, and their implications to society. In the chapters that follow, our mandate is to critically assess the state of knowledge on recent past (from the 1970s), present and possible future trends in multi-scale interactions between people and nature, taking into consideration different worldviews and knowledge systems, including those representing mainstream natural and social sciences and the humanities, and indigenous and local knowledge systems. In doing so, the GA also assesses where the world stands in relation to several international agreements related to biodiversity and sustainable development.Fil: Brondizio, Eduardo. No especifíca;Fil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Settele, Josef. No especifíca;Fil: Ngo, Hien. No especifíca;Fil: Guèze, Maximilien. No especifíca;Fil: Aumeeruddy-Thomas, Y. No especifíca;Fil: Bai, Xuemei. No especifíca;Fil: Geschke, Arne. No especifíca;Fil: Molnár, Zsolt. No especifíca;Fil: Niamir, Aidin. No especifíca;Fil: Pascual, Unai. No especifíca;Fil: Simcock, Alan. No especifíca;Fil: Jaureguiberry, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Hien, Ngo,. No especifíca;Fil: Brancalion, Pedro. No especifíca;Fil: Chan, Kai M. A.. No especifíca;Fil: Dubertret, Fabrice. No especifíca;Fil: Hendry, Andrew. No especifíca;Fil: Liu, Jianguo. No especifíca;Fil: Martin, Adrian. No especifíca;Fil: Martín López, Berta. No especifíca;Fil: Midgley, Guy F.. No especifíca;Fil: Obura, David. No especifíca;Fil: Oliver, Tom. No especifíca;Fil: Scheffran, Jürgen. No especifíca;Fil: Seppelt, Ralf. No especifíca;Fil: Strassburg, Bernardo. No especifíca;Fil: Spangenberg, Joachim H.. No especifíca;Fil: Stenseke, Marie. No especifíca;Fil: Turnhout, Esther. No especifíca;Fil: Williams, Meryl J.. No especifíca;Fil: Zayas, Cynthia. No especifíca

    Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe

    Get PDF
    Wildfire occurrence is influenced by climate, vegetation and human activities. A key challenge for understanding the risk of fires is quantifying the mediating effect of vegetation on fire regimes. Here, we explore the relative importance of Holocene land cover, land use, dominant functional forest type, and climate dynamics on biomass burning in temperate and boreo-nemoral regions of central and eastern Europe over the past 12 kyr. We used an extensive data set of Holocene pollen and sedimentary charcoal records, in combination with climate simulations and statistical modelling. Biomass burning was highest during the early Holocene and lowest during the mid-Holocene in all three ecoregions (Atlantic, continental and boreo-nemoral) but was more spatially variable over the past 3–4 kyr. Although climate explained a significant variance in biomass burning during the early Holocene, tree cover was consistently the highest predictor of past biomass burning over the past 8 kyr. In temperate forests, biomass burning was high at ~ 45% tree cover and decreased to a minimum at between 60% and 70% tree cover. In needleleaf-dominated forests, biomass burning was highest at ~60 %–65%tree cover and steeply declined at > 65% tree cover. Biomass burning also increased when arable lands and grasslands reached ~15 %–20 %, although this relationship was variable depending on land use practice via ignition sources, fuel type and quantities. Higher tree cover reduced the amount of solar radiation reaching the forest floor and could provide moister, more wind-protected microclimates underneath canopies, thereby decreasing fuel flammability. Tree cover at which biomass burning increased appears to be driven by warmer and drier summer conditions during the early Holocene and by increasing human influence on land cover during the late Holocene. We suggest that longterm fire hazard may be effectively reduced through land cover management, given that land cover has controlled fire regimes under the dynamic climates of the Holocene

    Diverse values of nature for sustainability

    Get PDF
    Twenty-five years since foundational publications on valuing ecosystem services for human well-being(1,2), addressing the global biodiversity crisis(3) still implies confronting barriers to incorporating nature's diverse values into decision-making. These barriers include powerful interests supported by current norms and legal rules such as property rights, which determine whose values and which values of nature are acted on. A better understanding of how and why nature is (under)valued is more urgent than ever(4). Notwithstanding agreements to incorporate nature's values into actions, including the Kunming-Montreal Global Biodiversity Framework (GBF)(5) and the UN Sustainable Development Goals(6), predominant environmental and development policies still prioritize a subset of values, particularly those linked to markets, and ignore other ways people relate to and benefit from nature(7). Arguably, a 'values crisis' underpins the intertwined crises of biodiversity loss and climate change(8), pandemic emergence(9) and socio-environmental injustices(10). On the basis of more than 50,000 scientific publications, policy documents and Indigenous and local knowledge sources, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) assessed knowledge on nature's diverse values and valuation methods to gain insights into their role in policymaking and fuller integration into decisions(7,11). Applying this evidence, combinations of values-centred approaches are proposed to improve valuation and address barriers to uptake, ultimately leveraging transformative changes towards more just (that is, fair treatment of people and nature, including inter- and intragenerational equity) and sustainable futures

    Diverse values of nature for sustainability

    Get PDF
    Twenty-five years since foundational publications on valuing ecosystem services for human well-being1,2, addressing the global biodiversity crisis3 still implies confronting barriers to incorporating nature’s diverse values into decision-making. These barriers include powerful interests supported by current norms and legal rules such as property rights, which determine whose values and which values of nature are acted on. A better understanding of how and why nature is (under)valued is more urgent than ever4. Notwithstanding agreements to incorporate nature’s values into actions, including the Kunming-Montreal Global Biodiversity Framework (GBF)5 and the UN Sustainable Development Goals6, predominant environmental and development policies still prioritize a subset of values, particularly those linked to markets, and ignore other ways people relate to and benefit from nature7. Arguably, a ‘values crisis’ underpins the intertwined crises of biodiversity loss and climate change8, pandemic emergence9 and socio-environmental injustices10. On the basis of more than 50,000 scientific publications, policy documents and Indigenous and local knowledge sources, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) assessed knowledge on nature’s diverse values and valuation methods to gain insights into their role in policymaking and fuller integration into decisions7,11. Applying this evidence, combinations of values-centred approaches are proposed to improve valuation and address barriers to uptake, ultimately leveraging transformative changes towards more just (that is, fair treatment of people and nature, including inter- and intragenerational equity) and sustainable futures
    corecore