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Abstract
Monitoring progress towards global goals and biodiversity targets require reliable descrip-
tions of species distributions over time and space. Current gaps in accessible information 
on species distributions urges the need for integrating all available data and knowledge 
sources, and intensifying cooperations to more effectively support global environmental 
governance. For many areas and species groups, experts can constitute a valuable source 
of information to fill the gaps by offering their knowledge on species-environment interac-
tions. However, expert knowledge is always subject to uncertainty, and incorporating that 
into species distribution mapping poses a challenge. We propose the use of the dempster–
shafer theory of evidence (DST) as a novel approach in this field to extract expert knowl-
edge, to incorporate the associated uncertainty into the procedure, and to produce reliable 
species distribution maps. We applied DST to model the distribution of two species of 
eagle in Spain. We invited experts to fill in an online questionnaire and express their beliefs 
on the habitat of the species by assigning probability values for given environmental vari-
ables, along with their confidence in expressing the beliefs. We then calculated evidential 
functions, and combined them using Dempster’s rules of combination to map the species 
distribution based on the experts’ knowledge. We evaluated the performances of our pro-
posed approach using the atlas of Spanish breeding birds as an independent test dataset, 
and further compared the results with the outcome of an ensemble of conventional SDMs. 
Purely based on expert knowledge, the DST approach yielded similar results as the data 
driven SDMs ensemble. Our proposed approach offers a strong and practical alternative for 
species distribution modelling when species occurrence data are not accessible, or reliable, 
or both. The particular strengths of the proposed approach are that it explicitly accounts for 
and aggregates knowledge uncertainty, and it capitalizes on the range of data sources usu-
ally considered by an expert.
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Introduction

Monitoring progress towards Aichi Biodiversity Targets (SCBD 2010) and the Sustain-
able Development Goals (United Nations 2015), and using corresponding indicators in 
global environmental governance, all require reliable descriptions of species distribution 
over time and space (Visconti et al. 2016; Kissling et al. 2018). Gaps in accessible infor-
mation on species distributions, except in a handful of well-sampled regions and species, 
necessitates integrating all available data and knowledge sources, and intensifying coop-
eration to more effectively address societal biodiversity information needs (Kot et al. 2010; 
Meyer et al. 2015, 2016; GBIF Secretariat 2017). A valuable alternative source by which 
this scarcity of information can be compensated is experts and their knowledge on species-
environment interactions (Murray et al. 2009; Martin et al. 2012). There are few countries 
in which accessible information on expert-expected species ranges are above one-fifth of 
all species groups (Map of Life 2018). Therefore, expert knowledge is still the most com-
prehensive source of information on species distribution all around the world. Experts may 
come up with beliefs concerning the distribution of species at a specific location, or predic-
tions given specific environmental evidence (Kuhnert 2011). Belief is the simplest form 
of mental representation in which an expert expresses their knowledge. Expert knowledge 
of species distributions and its environmental preferences are either gained through direct 
observation, or deducted from indirect sources of information. Expert knowledge is always 
subject to a level of uncertainty. In practice, however, application of expert knowledge in 
species distribution mapping, and accounting for the corresponding level of uncertainty, 
presents challenges (Ferrier et al. 2002), and has not yet been widely promoted (Carpenter 
2002; Franklin 2010).

Several approaches have been developed for knowledge elicitation and incorporation 
into species distribution modelling practices. Multi-criteria decision methods such as the 
analytical hierarchy process (Anselin et al. 1989; Store and Kangas 2001; Doswald et al. 
2007), expert system formalisms (Yang et  al. 2006), and fuzzy sets theory (Rüger et  al. 
2005) have been widely applied in habitat suitability modelling. However, conventional 
data driven distribution models often outperform mentioned approaches when sufficient 
species occurrence data are available. Another approach is to conduct expert knowledge 
using Bayesian models (Choy et al. 2009; Kuhnert et al. 2010), which accommodates the 
experts’ knowledge in the form of probabilities. This approach requires an expert to have 
beliefs on the probability of either presence or absence of species, which is unlikely in 
most cases, thus often treated as corresponding complementary steps (Niamir et al. 2011).

A flexible framework for approaching the representation of knowledge and therefore the 
recognized ignorance is the Dempster–Shafer theory of evidence (DST) (Dempster 1968; 
Shafer 1976; Dempster 2008a). The DST draws inferences from incomplete and uncer-
tain knowledge provided by various independent knowledge sources. An advantage of this 
theory is its ability to deal with ignorance. In particular, it provides explicit estimation of 
the extent of imprecision and conflict resulting from the knowledge provided by various 
experts, and can deal with any union of hypotheses (Le Hegarat-Mascle et al. 1997). It han-
dles ambiguous and incomplete information using evidential functions. Evidential func-
tions can be derived from probabilities (Lee et  al. 1987; Rombaut and Zhu 2002), from 
the distance to cluster centre (Bloch 1996), or from fuzzy membership functions (Binaghi 
et  al. 2000; Boudraa et  al. 2004). These functions can then be used to represent incom-
plete knowledge, and to distinguish between the lack of information and observed infor-
mation (An et  al. 1994). The DST has been successfully applied in the geo-information 
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domain (Malpica et al. 2007), particularly in remote sensing and image processing (Mer-
tikas and Zervakis 2001), decision making (Altieri et al. 2017), and uncertainty manage-
ment (Comber et al. 2004; Clements et al. 2006; Baraldi and Zio 2010; Feizizadeh 2018), 
and has been widely used in risk management (Neshat and Pradhan 2015; González et al. 
2018).

In this study we aim to demonstrate the application of the DST to compensate for the 
gaps in accessible information on species distribution where occurrence data is neither 
available nor reliable, nonetheless expert knowledge exists and surveying knowledge hold-
ers is more feasible than running a systemic field sampling. This also provides a framework 
that accounts for knowledge uncertainty, aggregates knowledge from multiple experts, and 
thus combines beliefs. We formed an independent expert panel and derived the eviden-
tial functions using an online questionnaire (see Appendix S2) for two eagle species, the 
Bonelli’s eagle (Aquila fasciata), and the short-toed eagle (Circaetus gallicus) in Spain. 
We then evaluated the performance of our approach using an independent occurrence data-
set from the atlas of Spanish breeding birds (Martí and del Moral 2003).

Explanation of Dempster–Shafer theory of evidence

The DST is a generalisation of traditional probability that allows uncertainty to be quanti-
fied (Shafer 1982; Dempster 2008a). This theory first supposes the definition of a set of 
hypotheses Θ called the frame of discernment, defined as follows:

It is composed of N hypotheses. Let’s denote P(Θ) as the power set composed with the 
2 N propositions A of Θ, where ∅ denotes the empty set:

A key point of evidence theory is the Basic Probability Assignment (BPA) which is a 
function from P(Θ) to [0,1] defined by:

and satisfies the following conditions:

From a general point of view, contrary to probability theory—which assigns the proba-
bility mass to single elementary events, the DST makes basic probability assignments m(A) 
on sets of outcomes. The basic belief assignment m(A) expresses the degree of belief that 
a specific element x belongs to the set A only, and not to any subset of A (Baraldi and Zio 
2010). The DST has also conceptual differences from Bayesian Theory. Bayesian theory 
requires an explicit formulation of conditioning and prior probabilities of events. While the 
DST embeds conditioning information into its evidential function, making it appropriate 
for situations where it is difficult to either collect or posit such probabilities, or isolate their 
contribution (Lee et  al. 1987; Hoffman and Murphy 1993; Comber et  al. 2004). Unlike 
probability theory that imposes restrictive conditions on the specification of the likelihood 
of events as a result of the requirement that the probabilities of the occurrence event must 
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sum to 1, there are two measures of likelihood in the DST called evidential functions. The 
evidential functions are the degree of support (Sup) and the degree of plausibility (Pls), 
which represent the upper and lower probability that the available evidence supports a par-
ticular belief (Dempster 2008b), as well as the degree of uncertainty (Unc) and the degree 
of disbelief (Dis) (Fig. 1). Pls is always equal, or larger than Sup, and subtracting Sup from 
Pls reveals Unc representing the ignorance in one’s belief. If there is no doubt then Sup is 
equal to Pls. However, if Sup and Dis are set to zero, then there can only remain Unc repre-
senting full ignorance, given the evidence.

The Dempster’s (1968) rule of combination is the first one within the framework of evi-
dence theory which can combine two BPAs m1 and m2 to yield a new BPA:

with

where k measures the degree of conflict between m1 and m2, k = 0 corresponds to the 
absence of conflict, whereas k = 1 implies complete contradiction between m1 and m2. The 
evidential function resulting from the combination of J information sources SJ is defined as

This provides a framework for the estimation of evidential functions, which are inte-
grated according to Dempster’s rule of combination. For each spatial variable used as an 
evidence, two independent functions must be estimated, either Sup and Dis, or Sup and 
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Fig. 1   Schematic relationship of evidential functions (y-axis) for continuous (right x-axis) and categorical 
(left x-axis) environmental domain (i.e. evidence). The evidential functions are the degree of support (in 
green), and the degree of plausibility (in blue) which represent the upper and lower probability that the 
available evidence supports a particular belief, as well as the degree of uncertainty (in red) and the degree 
of disbelief (in purple)
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Unc (Chung and Fabbri 1993; An et al. 1994). Given evidences X1 and X2, each with Sup 
and Dis functions, the combined Sup, Dis, and Unc are shown in the following equations 
(Wright 1996; Carranza and Hale 2001):

where � ensures that the sum of Bel, Dis, and Unc is equal to 1.
The orthogonal sum thus allows two functions to be combined into a third function, 

which effectively pools pieces of evidence to support propositions of interest and multi-
source information can be easily fused in the framework of evidence theory. Derivation 
of the evidential functions is the most crucial step since it represents the belief as well as 
the uncertainty surrounding selected evidence. This step requires prudence when applying 
DST to species distribution since the assignment of function values fully rely on the quality 
of expert knowledge (Moon 1989; Tangestani and Moore 2002).

Materials and methods

Study area

The study area is mainland Spain, covering about 493,000  km2. Spain may be divided 
into three climatic areas due to its large size; Atlantic, Mediterranean, and Interior. For-
ests are widely distributed in Spain and cover approximately half of the country (Balnco 
et al. 2005). Spain also comprises important mountain ranges, situated mainly in the north 
(Pyrenees and Cantabrian mountains) and the southeast (Baetic mountains), with relevant 
mountain chains traversing central Spain from west to east (Iberian and Central systems). 
The Iberian sclerophyllous and semi-deciduous forests is the dominant ecoregion (Olson 
et al. 2001) followed by a band of the Cantabrian mixed forests in the north, patches of 
conifer and montane forests, and Mediterranean sclerophyllous and woodlands. Mainland 
Spain is of particular interest for the target species of this study in a European context.

Choice of species and independent occurrence data

We selected two raptors for this study; the Bonelli’s eagle, a well-known species, and 
the poorly-sampled short-toed eagle. This selection provided us an opportunity to fur-
ther investigate the application of an approach where expert knowledge is mainly based 
on direct observation and extensive literature, versus the case that it is mainly based on 
deduction and indirect observations. The Bonelli’s eagle is a medium to large, cliff-nesting 
bird of prey with its western Palaearctic populations mainly located in the Mediterranean 
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area (Del Hoyo et  al. 1994). The European population has suffered a significant decline 
over the last decade, and the Bonelli’s eagle has consequently been listed as an endan-
gered European Species (Birdlife-International 2015). Spain supports 730–800 breeding 
pairs (Real 2003) or about 80% of the total European population. Since the Bonelli’s eagle 
is included as a priority target species for special conservation measures in European and 
Spanish legislations, high-priority conservation has been urged and consequently, it is a 
fairly well-studied species (Muñoz and Real 2013; Muñoz et  al. 2013). The short-toed 
eagle is a medium-sized bird of prey. The European population migrates mainly to sub-
Saharan Africa (Del Hoyo et  al. 1994), leaving in September–October and returning in 
March–April. This species builds its nests on trees, mainly pines, in forests with relatively 
little human disturbance (López-Iborra et  al. 2011). Nowadays, the species seems to be 
more abundant than in the past decades, with estimates of approximately 10,000 breed-
ing pairs (Palomino et al. 2011). Currently, there are several reports on their wintering in 
southern Spain (Jiménez and Muñoz 2008). Due to its shy behaviour, commonness, and 
low-priority conservation status, the short-toed eagle remains one of the least-sampled rap-
tor species in the region.

We obtained the occurrence datasets from the Atlas of Spanish breeding birds (Martí 
and del Moral 2003) for both species using Universal Transverse Mercator (UTM) 
10 × 10 km grid cells (n = 684). A species was recorded as being present in a grid cell if 
the atlas of Spanish breeding birds’ database held at least one reliable record of that species 
from a location within that grid cell. There are 943 grid cells (~ 20% of the study area) for 
the Bonelli’s eagle, and 2667 grid cells (~ 57% of the study area) for the short-toed eagle is 
marked as present (see Appendix S1). Since the sampling scheme was harmonized across 
the country and has been repeated for years, we assumed grids with no occurrence report 
as absences, 2017 grid cells for the short-toes eagle and 3741 grid cell for the Bonelli’s 
eagle.

Choice of experts

Independent experts were identified through their membership of a scientific society and 
by their relevant publications. All selected experts had performed long term extensive stud-
ies on birds of prey and specifically on the selected species in Spain. They were invited to 
participate and reply to the online questionnaire (see Appendix S2) independently. Nine 
experts accepted the invitation and thus formed the knowledge domain for this study. Seven 
experts submitted online questionnaires for both species, while two did so for one species 
only. Therefore the knowledge domain for each species consisted of eight experts. Experts 
did not exchange knowledge nor fill in the questionnaires collaboratively. We modified 
the questionnaires in order to avoid any pairwise or multiple comparisons. We also asked 
experts to provide us with comments at the end of each section. Experts were also asked to 
express their main sources of knowledge too.

Environmental predictors

We studied the literature and consulted experts on species habitat preferences for both the 
Bonelli’s eagle and the short-toed eagle in order to collect a list of potentially relevant 
environmental predictors. The predictors were chosen on the basis of availability, the 
spatial correlation among predictors (i.e. Multicollinearity) (Legendre 1993), and poten-
tial predictive power for the target in Spain. We then presented the expert panel with the 
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land cover classes (EEA 2016), topographical attributes (i.e. elevation, slope, and aspect) 
(USGS 2006), as well as two bioclimatic variables; maximum temperature in the warmest 
month, and minimum temperature in the coldest month (Fick and Hijmans 2017). We pro-
vided expert panel with 2 classes of aspect (north facing slopes and south facing slopes), 
3 classes of slope (flat < 30%, steep 30% < > 100%, and very steep > 100%), and 3 classes 
of elevation (Lowlands < 1000 masl, Midlands 1000 masl < > 2000 masl, Highlands > 2000 
masl). However, the experts had an option to provide their own classes or define response 
curves for each gradient. We harmonized the spatial resolution of the predictors at 1 × 1 km 
in Universal Transverse Mercator (UTM) projection. We aggregated and resampled topo-
graphical attributes by the mean function and the land cover classes by the majority func-
tion from their original spatial resolution (i.e. 0.1 × 0.1 km). See Appendixes S1 and S4.

Performance measures

We measured the discrimination capacity of species distribution models by analysing their 
receiver operation characteristic (ROC) curves. A ROC curve plots sensitivity values (i.e. a 
true positive fraction) on the y-axis against 1—specificity values (i.e. a false positive frac-
tion) for all the thresholds on the x-axis. The area under such a curve (AUC) provides a 
threshold-independent measure across all possible classification thresholds for each model 
(Fielding and Bell 1997). We used the full independent atlas dataset to measure the dis-
crimination capacity of the models. We also measured the calibration (i.e. goodness-of-fit) 
(Lemeshow and Hosmer 1982) of the models using Miller’s calibration statistic (Miller 
et  al. 1991; Pearce and Ferrier 2000) based on the full independent atlas dataset. Mill-
er’s calibration statistic evaluates the ability of a distribution model to correctly predict 
the proportion of species occurrences with a given environmental profile. It is based on 
the hypothesis that the calibration line (i.e. perfect calibration) has an intercept of zero 
and a slope of one. The calibration plot shows the model’s estimated probability (x-axis) 
against the mean observed proportion of positive cases (y-axis) for equal-sized probability 
intervals (number of intervals = 10). We compared the models by calculating the root mean 
square error (RMSE) of the calibration plot for each model (Armstrong and Collopy 1992; 
Niamir et al. 2016). RMSE is always between 0 and 1. For example, if the model line lies 
exactly on the calibration line, then the RMSE will be 0.

To further investigate the performance of the proposed approach we compared the out-
come of the DST models with multiple SDMs within an ensemble forecasting framework 
(Araújo and New 2007). This provides insights to better explore uncertainty propagation 
and spatial patterns. Since the study area, the environmental predictors, the target species, 
and the test dataset were exactly the same (Araújo and New 2007; Godsoe 2012; Qiao et al. 
2018); we used AUC to measures and compare the discrimination power of the SDMs and 
DST models. We also calculated and compared the RMSE calibration plot as a measure 
of calibration for the SDMs. We used four methods; generalized linear model, general-
ized additive models, boosted regression trees, and random forests to form an unweighted 
ensemble framework. See Appendix S5 for settings. We followed the recommended default 
setting of SDM R package (Naimi and Araújo 2016). For each species and in 100 realiza-
tions, we randomly sampled 50% of the species atlas datasets to train, and the remaining 
to test the models. The idea was to compute the result of the models repeatedly using var-
ied input values and then to assess the accuracy of each (Heuvelink 1998). This so-called 
Monte Carlo simulation allowed us to assess uncertainty in the ensemble framework.
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We also performed a complementary assessment to measure geographical pattern simi-
larity between the DST models and multiple SDMs using the SDMTools package (Van-
DerWal et al. 2014) proposed by Warren et al. (2008) and modified by Broennimann et al. 
(2012).

Experimental settings

We used a structured procedure to interrogate the experts. The experts were provided with 
online questionnaires consisting of factual questions See Appendix S3. The procedure to 
assign evidential functions and to combine BPAs was as follows:

•	 The experts assigned their beliefs in form of likelihood (P) given the evidence. To 
avoid misinterpretations we stay at the verbal models when asking beliefs. We set four 
linguistic probabilities (Xu et  al. 2003; Bárdossy and Fodor 2004) “very unlikely”, 
“unlikely”, “likely”, and “very likely” in order to subsequently derive a numerical 
value to represent belief (Fig. 2); e.g. “It is unlikely that Bonelli’s eagle nest in mine, 
dump, or constitution sites”. For continuous evidence layers we implemented this pro-
cess in a fuzzy inference system (Zadeh 1988), into which the evidential functions 
were imported as membership functions for the given evidence; e.g. “It is likely that 
the short-toed eagle nest in steep (above 100%) slopes”. Experts had the option not to 
assign belief (P) to evidence (i.e. environmental factor). This provides an opportunity 
to accommodate beliefs from variety of evidence. This means that experts can skip a 
piece of evidence while others assign beliefs to that.

•	 In each question—corresponding to a piece of evidence—the expert is asked to self-
evaluate the level of confidence in her/his knowledge in order to express their belief 

Very Unlikely Unlikely Likely Very Likely

0.125 0.375 0.625 0.825

Probably will not Probably will

Absolutely will not Absolutely will

1 52 3 4

Not confident at all Quite confident

0.5 0.750.25

Fig. 2   Word-to-probability relationship adopted from (Xu et al. 2003). Top; Experts assigned their beliefs 
in form of likelihood (italic) using verbal models, and the corresponding numerical values (bold) were used 
to generate evidential functions. Bottom; experts self-evaluated the level of confidence in their knowledge 
using a five-point scale ranging from “not confident at all” to “quite confident”, the corresponding numeri-
cal values (bold) were used to generate evidential functions
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on favourable habitat of the target species. We used a five-point scale ranging from 
“not confident at all” to “quite confident”. We assumed that the level of confidence and 
the degree of uncertainty are complementary percentage, i.e. Uncertainty =1 − Confi-
dence. We then converted these rankings, using Fig. 2, into belief equivalents to obtain 
the degree of uncertainty to be applied to that specific belief.

	   Given the probability of occurrence (P) and the degree of uncertainty (Unc) for the 
given evidence, the degree of support (Sup), and the degree of plausibility (Pls) were 
calculated as follows:
	 

	 

•	 This approach insured asymmetric weights of uncertainty for the upper (Pls) and the 
lower (Sup) probabilities.

•	 We applied the evidential functions to their corresponding piece of evidence (i.e. envi-
ronmental factor) to generate the Sup and the Unc maps for each of the experts. Then 
the generated maps were combined using Dempster’s (1968) rules of combination to 
produce the Sup map and the Unc map for each of the environmental predictors.

•	 Finally, the Sup map and the Unc map of all the environmental factors were combined 
using the same rules to obtain the final Sup map of the target species along with the 
degree of uncertainty. The Pls and the Dis maps were generated accordingly. Note that 
this procedure is not sensitive to the order in which the environmental factors and the 
experts are combined.

Results

We produced the support (Sup) and the plausibility (Pls) maps for each of the environmen-
tal factors (i.e. evidence) based on the knowledge domain using combination rules for both 
species, and calculated the discrimination capacity and RMSE of the Miller’s calibration 
plot of the Sup and the Pls maps (Table 1). For Bonelli’s eagle, the slope gradient and the 
land cover classes were the most discriminative evidential layers with mean AUC values of 
0.70 and 0.69, respectively. The discrimination capacity for the aspect and the bioclimatic 
variables was relatively low with AUC values below 0.60. Two experts did not assign prob-
ability values based on the aspect for the Bonelli’s eagle. They both commented that they 
believe this variable is not a discriminative parameter for this species.

For the short-toed eagle the slope gradient gained the highest discrimination capac-
ity with mean AUC values of 0.69 followed by the land cover with mean AUC values of 
0.64. The Sup was more discriminative (AUC = 0.68) than the Pls (AUC = 0.62), suggest-
ing that experts overestimated their uncertainty when using the land cover classes. Three 
of the experts did not use the minimum temperature in the coldest month on the basis that 
the short-toed eagle is a migratory species. However, the other experts acknowledged that 
those few birds wintering in southern Spain would avoid freezing temperatures and there-
fore assigned their evidential functions using this variable.

We applied Dempster’s combination rule recursively so that the above-mentioned evi-
dence maps were combined in a pairwise manner. When we combined all the evidential 
maps for the short-toed eagle (Fig. 3) the mean AUC improved to 0.70 (Table 1). However, 
the most discriminative distribution map for the short-toed eagle was achieved by combin-
ing the land cover, the elevation, and the slope (AUC = 0.71). The discrimination capacity 

Sup = P− (Unc × P)

Pls = P + (Unc × (1 − P))
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of distribution maps for the Bonelli’s eagle sharply improved to 0.80 when all the environ-
mental predictors except the maximum temperature in the warmest month were included 
(Fig. 3). The mean AUC decreased to 0.78 when the temperature in the warmest month 
also combined.

We calculated the RMSE of the calibration plot of the final distribution maps for both 
species to evaluate the reliability of the output (Table 1). The maps of the short-toed eagle 
were better calibrated (i.e. the model’s estimated probability closer to the Miller’s cali-
bration line) between the probability ranges 0.4 and 0.8 compared to the Bonelli’s eagle. 
The Bonelli’s eagle maps generally underestimated the probability of occurrence. Over-
all, in the case of short-toed eagle although the discrimination capacity of the maps was 
not high (AUC ~ 0.70), the models were well-calibrated (RMSE ~ 0.22) thus reliable for 
spatial and temporal extrapolation. However, in the case of the Bonelli’s eagle predictive 
power of the evidential functions was high (AUC ~ 0.80), but the models were not well-
calibrated (RMSE ~ 0.40). The uncertainty propagation assessment revealed that the overall 

Bonelli’s eagle

Bonelli’s eagle

Short-toed eagle

Short-toed eagle

1.0

0.0

0.2

0.4

0.6

0.8

Fig. 3   Distribution maps of the Bonelli’s eagle (left column) and the short-toed eagle (right column) in 
Spain, modelled by the DST approach (upper row), and the SDMs ensemble (lower row). The DST 
approach is purely based on expert knowledge. The SDMs ensemble is based on the Atlas of Spanish 
Breeding Birds. Both approaches used five environmental factors. Maps are presented on a graduated dark-
green-red scale; darkgreen indicating low probability of occurrence, and red indicating high probability of 
occurrence
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uncertainty of the combined maps was diminished when the Dempster’s combination rule 
was applied recursively for both species. We should note that this solely reflects the uncer-
tainty of the combined beliefs, and should not be interpreted as an accuracy measure, as it 
absolutely depends on the quality of the expert panel.

We compared the performance of the DST outcomes (i.e. the expert panel) with the per-
formance of the SDMs ensemble (Fig. 3). The average AUC values as a result of the Monte 
Carlo simulation for Bonelli’s eagle were 0.81 with the variation around 0.09. These values 
for the short-toed eagle were 0.74 with slightly higher standard deviation around 0.11. The 
SDMs ensemble outperformed the DST models with small differences for both species. In 
case of the short-toed eagle the RMSE of the calibration plot were almost similar between 
SDMs ensemble and DST models, while for the Bonelli’s SDMs ensemble was better cali-
brated (Table  1). There were high values of geographical pattern similarity between the 
predictions obtained using multiple SDMs and those obtained using DST models (Hell-
inger’s I > 0.95; Table 1).

To have a better insight into the variability among experts, we compared the eviden-
tial functions assigned by the expert panel. It revealed that two of the experts consistently 
assigned relatively higher probabilities, while one other consistently assigned relatively 
lower probabilities for both species. We also noticed in our experiments that direct observa-
tions and field experiments made experts more confident, resulting in them assigning a rel-
atively lower uncertainty level to their estimates. In contrast, the experts who obtained their 
knowledge indirectly and deductively, self-evaluated a lower level of confidence in their 
estimates. In general the expert’s self-acknowledged confidence level—and therefore the 
difference between support and plausibility functions for the Bonelli’s eagle, was relatively 
lower compared with the short-toed eagle. This was in accordance with the fact that the 
Bonelli’s eagle is a better-known species in the study area than the short-toed eagle. The 
experts were more consistent in expressing their knowledge when using land cover classes 
for both species than when using other environmental predictors. There were higher lev-
els of inconsistency among experts when considering topographic variables, though their 
levels of confidence were relatively high. The experts were less confident when assigning 
belief functions to bioclimatic variables. We also noticed that experts were more confident 
in expressing their knowledge based on visible and geographically detectable phenomena 
(e.g. the land cover class and the aspect) than those with implicit characteristics (e.g. the 
elevation, and the temperature).

Discussion

Inductive models can be employed to study species-environmental relationships, and to 
support initiatives to achieve targets where information on species distribution is accessi-
ble at the desired spatial scale. However, for many terrestrial and marine regions sufficient 
information on species distribution is not accessible to inform policymakers (Kot et  al. 
2010; Meyer et al. 2015). Utilizing expert knowledge, as an alternative source of informa-
tion, may allow obtaining reliable information on species distribution where occurrence 
data are scarce (GBIF Secretariat 2017; Map of Life 2018). However, expert knowledge is 
always subject to uncertainty and this should be accounted for in the procedure.

Walker et  al. (2003) categorized the nature of uncertainty into epistemic uncertainty 
and stochastic uncertainty. Stochastic uncertainty is unavoidable and will always be present 
when dealing with nature. In contrast, the epistemic uncertainty—or recognised ignorance 
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(Brown 2004)—is due to the imperfect knowledge that may be reduced with study and 
research. Uncertainty in expert knowledge stems from both incomplete understanding of 
a phenomenon, and an incomplete ability to accurately generalize knowledge beyond the 
scope of observations (Walker et al. 2003).

The result of this study demonstrates a successful implementation of expert knowl-
edge elicitation and combination through DST evidential functions while accounting for 
knowledge uncertainty across multiple experts. In this study, we presented an approach 
that accounts for the recognized ignorance in the process of knowledge acquisition that 
helps to distinguish the epistemic uncertainty from the innate uncertainty of natural phe-
nomena. Our approach was entirely based on the knowledge of experts with a variety of 
backgrounds, i.e. academics and technical fieldworkers; the evidential functions effectively 
represent experts’ epistemic uncertainty.

We are aware of the potential existing biases in expert knowledge. Experts’ replies to 
the questionnaire may be biased, producing optimistic or pessimistic responses (Cooke 
1991), or they may say “don’t know” and assign 100% uncertainty to a class within a single 
variable or to an entire set of variables. Furthermore, the rule of combination offers a basis 
for both aggregation and propagation of uncertainties (Baraldi and Zio 2010). Our results 
show a decrease in the level of uncertainty, combining them in each iteration. In his third 
general principle about probability, Laplace and Dale (1995) defined that if the events are 
independent of one another, then the probability of their combined occurrence is the prod-
uct of their probabilities. This suggests that the number of pair-wise combinations may 
compensate for the overall gap between the degree of support and the degree of plausibil-
ity, and thus decrease the level of uncertainty per iteration. The number of experts and the 
variety of explanatory variables may be modified based on the required level of confidence.

We evaluated the final distribution maps produced by the proposed DST approach with 
an independent atlas dataset, further compared with two conventional inductive approaches. 
In the case of the Bonelli’s eagle our proposed approach demonstrated almost similar dis-
crimination power compared to inductive approaches, while inductive approaches outper-
formed DST in the case of the short-toed eagle. Bonelli’s eagle is a cliff-nesting species, 
evidence of nesting is generally more obvious than it is for the short-toed eagle, which is 
a forest species. Indeed, cliffs are easier to monitor than forested areas; the reproduction 
of Bonelli’s eagles is usually confirmed by direct observation of the chicks in the nest, 
whereas in the case of the short-toed eagle, even if there is reasonable confidence that they 
are breeding in an area, the nest is rarely observed and therefore leaving doubts. Although 
evidential functions better discriminated favourable habitats for the Bonelli’s eagle than the 
short-toed eagle, the distribution map of the short-toed eagle was well-calibrated, while 
this was not the case for the Bonelli’s eagle. This might be an artefact of direct observa-
tions and inductive sources of knowledge—being able to identify highly favourable areas 
and to a lesser extent highly unfavourable areas, while not being able to identify areas 
where the probability is intermediate. For the short-toed eagle, which is a relatively lesser 
known species, experts provided more general beliefs and less specific classes than for the 
Bonelli’s eagle. This resulted in a well-calibrated model though with a lower discrimina-
tion capacity, mainly failing to identify the most favourable areas. This also suggests that 
areas with intermediate probability are more abundant than areas with high or low prob-
ability, and it is more difficult to discriminate the presence from the absence in areas with 
intermediate probability.

Although the DST is a powerful tool for probabilistic reasoning and has been applied 
widely in engineering and computer science, it has yet to reach the ecological modelling 
mainstream. Our proposed approach using the DST would be practical where knowledge 
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of a species’ geographic distribution is needed for conservation purposes, especially in 
case of poorly-sampled species. However, use of knowledgeable experts and, well-struc-
tured elicitation processes, are pre-requisites for maximizing the reliability of expert-based 
models (Murray et  al. 2009; Smith et  al. 2012). The particular strength of the proposed 
approach in this study is that it is explicit in accounting for uncertainty in knowledge for 
model prediction by using evidential functions. It also yields similar results to conventional 
inductive methods and provides a framework to propagate and aggregate uncertainty, and it 
capitalizes on the range of data sources usually considered by an expert.
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