512 research outputs found

    Assessing changes in vascular permeability in a hamster model of viral hemorrhagic fever

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A number of RNA viruses cause viral hemorrhagic fever (VHF), in which proinflammatory mediators released from infected cells induce increased permeability of the endothelial lining of blood vessels, leading to loss of plasma volume, hypotension, multi-organ failure, shock and death. The optimal treatment of VHF should therefore include both the use of antiviral drugs to inhibit viral replication and measures to prevent or correct changes in vascular function. Although rodent models have been used to evaluate treatments for increased vascular permeability (VP) in bacterial sepsis, such studies have not been performed for VHF.</p> <p>Results</p> <p>Here, we use an established model of Pichinde virus infection of hamsters to demonstrate how changes in VP can be detected by intravenous infusion of Evans blue dye (EBD), and compare those measurements to changes in hematocrit, serum albumin concentration and serum levels of proinflammatory mediators. We show that EBD injected into sick animals in the late stage of infection is rapidly sequestered in the viscera, while in healthy animals it remains within the plasma, causing the skin to turn a marked blue color. This test could be used in live animals to detect increased VP and to assess the ability of antiviral drugs and vasoactive compounds to prevent its onset. Finally, we describe a multiplexed assay to measure levels of serum factors during the course of Pichinde arenavirus infection and demonstrate that viremia and subsequent increase in white blood cell counts precede the elaboration of inflammatory mediators, which is followed by increased VP and death.</p> <p>Conclusions</p> <p>This level of model characterization is essential to the evaluation of novel interventions designed to control the effects of virus-induced hypercytokinemia on host vascular function in VHF, which could lead to improved survival.</p

    MLVA Subtyping of Genovar E Chlamydia trachomatis Individualizes the Swedish Variant and Anorectal Isolates from Men who Have Sex with Men

    Get PDF
    This study describes a new multilocus variable number tandem-repeat (VNTR) analysis (MLVA) typing system for the discrimination of Chlamydia trachomatis genovar D to K isolates or specimens. We focused our MLVA scheme on genovar E which predominates in most populations worldwide. This system does not require culture and therefore can be performed directly on DNA extracted from positive clinical specimens. Our method was based on GeneScan analysis of five VNTR loci labelled with fluorescent dyes by multiplex PCR and capillary electrophoresis. This MLVA, called MLVA-5, was applied to a collection of 220 genovar E and 94 non-E genovar C. trachomatis isolates and specimens obtained from 251 patients and resulted in 38 MLVA-5 types. The genetic stability of the MLVA-5 scheme was assessed for results obtained both in vitro by serial passage culturing and in vivo using concomitant and sequential isolates and specimens. All anorectal genovar E isolates from men who have sex with men exhibited the same MLVA-5 type, suggesting clonal spread. In the same way, we confirmed the clonal origin of the Swedish new variant of C. trachomatis. The MLVA-5 assay was compared to three other molecular typing methods, ompA gene sequencing, multilocus sequence typing (MLST) and a previous MLVA method called MLVA-3, on 43 genovar E isolates. The discriminatory index was 0.913 for MLVA-5, 0.860 for MLST and 0.622 for MLVA-3. Among all of these genotyping methods, MLVA-5 displayed the highest discriminatory power and does not require a time-consuming sequencing step. The results indicate that MLVA-5 enables high-resolution molecular epidemiological characterisation of C. trachomatis genovars D to K infections directly from specimens

    A Diverse and Flexible Teaching Toolkit Facilitates the Human Capacity for Cumulative Culture

    Get PDF
    © 2017, The Author(s). Human culture is uniquely complex compared to other species. This complexity stems from the accumulation of culture over time through high- and low-fidelity transmission and innovation. One possible reason for why humans retain and create culture, is our ability to modulate teaching strategies in order to foster learning and innovation. We argue that teaching is more diverse, flexible, and complex in humans than in other species. This particular characteristic of human teaching rather than teaching itself is one of the reasons for human’s incredible capacity for cumulative culture. That is, humans unlike other species can signal to learners whether the information they are teaching can or cannot be modified. As a result teaching in humans can be used to support high or low fidelity transmission, innovation, and ultimately, cumulative culture

    Supermultiplexed optical imaging and barcoding with engineered polyynes

    Get PDF
    Optical multiplexing has a large impact in photonics, the life sciences and biomedicine. However, current technology is limited by a 'multiplexing ceiling' from existing optical materials. Here we engineered a class of polyyne-based materials for optical supermultiplexing. We achieved 20 distinct Raman frequencies, as 'Carbon rainbow', through rational engineering of conjugation length, bond-selective isotope doping and end-capping substitution of polyynes. With further probe functionalization, we demonstrated ten-color organelle imaging in individual living cells with high specificity, sensitivity and photostability. Moreover, we realized optical data storage and identification by combinatorial barcoding, yielding to our knowledge the largest number of distinct spectral barcodes to date. Therefore, these polyynes hold great promise in live-cell imaging and sorting as well as in high-throughput diagnostics and screening

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Intelligent negotiation model for ubiquitous group decision scenarios

    Get PDF
    Supporting group decision-making in ubiquitous contexts is a complex task that must deal with a large amount of factors to succeed. Here we propose an approach for an intelligent negotiation model to support the group decision-making process specially designed for ubiquitous contexts. Our approach can be used by researchers that intend to include arguments, complex algorithms and agents' modelling in a negotiation model. It uses a social networking logic due to the type of communication employed by the agents and it intends to support the ubiquitous group decision-making process in a similar way to the real process, which simultaneously preserves the amount and quality of intelligence generated in face-to-face meetings. We propose a new look into this problematic by considering and defining strategies to deal with important points such as the type of attributes in the multicriteria problems, agents' reasoning and intelligent dialogues.This work has been supported by COMPETE Programme (operational programme for competitiveness) within project POCI-01-0145-FEDER-007043, by National Funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within the Projects UID/CEC/00319/2013, UID/EEA/00760/2013, and the João Carneiro PhD grant with the reference SFRH/BD/89697/2012 and by Project MANTIS - Cyber Physical System Based Proactive Collaborative Maintenance (ECSEL JU Grant nr. 662189).info:eu-repo/semantics/publishedVersio

    Selective Enrichment and Sequencing of Whole Mitochondrial Genomes in the Presence of Nuclear Encoded Mitochondrial Pseudogenes (Numts)

    Get PDF
    Numts are an integral component of many eukaryote genomes offering a snapshot of the evolutionary process that led from the incorporation of an α-proteobacterium into a larger eukaryotic cell some 1.8 billion years ago. Although numt sequence can be harnessed as molecular marker, these sequences often remain unidentified and are mistaken for genuine mtDNA leading to erroneous interpretation of mtDNA data sets. It is therefore indispensable that during the process of amplifying and sequencing mitochondrial genes, preventive measures are taken to ensure the exclusion of numts to guarantee the recovery of genuine mtDNA. This applies to mtDNA analyses in general but especially to studies where mtDNAs are sequenced de novo as the launch pad for subsequent mtDNA-based research. By using a combination of dilution series and nested rolling circle amplification (RCA), we present a novel strategy to selectively amplify mtDNA and exclude the amplification of numt sequence. We have successfully applied this strategy to de novo sequence the mtDNA of the Black Field Cricket Teleogryllus commodus, a species known to contain numts. Aligning our assembled sequence to the reference genome of Teleogryllus emma (GenBank EU557269.1) led to the identification of a numt sequence in the reference sequence. This unexpected result further highlights the need of a reliable and accessible strategy to eliminate this source of error

    Cdc20 Is Critical for Meiosis I and Fertility of Female Mice

    Get PDF
    Chromosome missegregation in germ cells is an important cause of unexplained infertility, miscarriages, and congenital birth defects in humans. However, the molecular defects that lead to production of aneuploid gametes are largely unknown. Cdc20, the activating subunit of the anaphase-promoting complex/cyclosome (APC/C), initiates sister-chromatid separation by ordering the destruction of two key anaphase inhibitors, cyclin B1 and securin, at the transition from metaphase to anaphase. The physiological significance and full repertoire of functions of mammalian Cdc20 are unclear at present, mainly because of the essential nature of this protein in cell cycle progression. To bypass this problem we generated hypomorphic mice that express low amounts of Cdc20. These mice are healthy and have a normal lifespan, but females produce either no or very few offspring, despite normal folliculogenesis and fertilization rates. When mated with wild-type males, hypomorphic females yield nearly normal numbers of fertilized eggs, but as these embryos develop, they become malformed and rarely reach the blastocyst stage. In exploring the underlying mechanism, we uncover that the vast majority of these embryos have abnormal chromosome numbers, primarily due to chromosome lagging and chromosome misalignment during meiosis I in the oocyte. Furthermore, cyclin B1, cyclin A2, and securin are inefficiently degraded in metaphase I; and anaphase I onset is markedly delayed. These results demonstrate that the physiologically effective threshold level of Cdc20 is high for female meiosis I and identify Cdc20 hypomorphism as a mechanism for chromosome missegregation and formation of aneuploid gametes
    corecore