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Abstract. Combining Fable robot, a modular robot, with a neuroin-
spired controller, we present the proof of principle of a system that can
scale to several neurally controlled compliant modules. The motor con-
trol and learning of a robot module are carried out by a Unit Learning
Machine (ULM) that embeds the Locally Weighted Projection Regres-
sion algorithm (LWPR) and a spiking cerebellar-like microcircuit. The
LWPR guarantees both an optimized representation of the input space
and the learning of the dynamic internal model (IM) of the robot. How-
ever, the cerebellar-like sub-circuit integrates LWPR input-driven contri-
butions to deliver accurate corrective commands to the global IM. This
article extends the earlier work by including the Deep Cerebellar Nuclei
(DCN) and by reproducing the Purkinje and the DCN layers using a
spiking neural network (SNN) implemented on the neuromorphic SpiN-
Naker platform. The performance and robustness outcomes from the real
robot tests are promising for neural control scalability.

Keywords: Neuro-robotics, bio-inspiration, motor control, cerebellum,
machine learning, compliant control, internal model

1 Introduction

The brain carries out tasks in a formidable manner, smoothly and with a low
power consumption. In contrast, robots lack the adaptability and precision of
human beings. Thus, our main interest is to study how the central nervous sys-
tem (CNS) controls the human body, coordinates smooth movements and the
mechanisms of motor control and motor learning towards the development of
bio-inspired autonomous robotic systems [1]. We present a bio-inspired closed-
loop control architecture that integrates a machine learning (ML) technique and
a cerebellar-like microcircuit to provide real-time neural control. The result is
a compliant system for motor learning that can scale to several neurally con-
trolled robot modules. This is achieved by combining a modular robot with the
neuromorphic computing platform, SpiNNaker [2]. The ML engine is the Locally
Weighted Projection Regression algorithm (LWPR) [3].

? ∗These authors contributed equally to this work.



1.1 The Cerebellar Microcircuit

The presented bio-inspired approach aims at emulating the cerebellar function
in learning and modulating accurate, complex and coordinated movements. The
cerebellum is involved in the neural control of bodily functions [4], such as pos-
tural positioning, balance or coordination of movements over time. Research
studies [5], [6], [7] described the cerebellum as a set of adaptive modules, also
called cerebellar microcomplexes, embedded in the motor control system to im-
prove coordinated movements over time. Ito [5] stated that each microcomplex is
a Unit Learning Machine (ULM): a set of structured neural circuits that modify
the relationship between the input and output in response to error signals. The
ULM encodes the internal model (IM) in order to precisely perform the con-
trol of the body part without referring to feedback. At the core of our control
architecture, a cerebellum-like model is implemented akin to the Marr-Albus
cerebellum model [8], [9]. The cerebellar cortex comprises three layered sheets
wrapped around the deep cerebellar nuclei (DCN) and it connects to the brain
stem via the superior, middle and inferior peduncles. The microcomplexes that
correspond to the minimal functional unit, show a similar internal microcir-
cuitry illustrated in Fig. 1. The main inputs are: the mossy fibers (MFs) and the
climbing fibers (CFs). MFs transmit sensory information originated from multi-
ple extra-cerebellar sources and carry out excitatory synapses with the dendrites
of the granule cells (GCs) and the deep cerebellar nuclei cells (DCNs). CFs arise
exclusively from the inferior olive (IO) within the brain stem and they are par-
ticularly responsive to unexpected somatosensory events. Thus, they are usually
conceived as error signal transmitters. The output of the cerebellar cortex is per-
formed by the Purkinje cell (PCs), which combines information received from
the CFs and the parallel fibers (PFs). The PC produces a ”complex spike” re-
sponse [10] each time it receives input from a CF. Finally, the DCNs combine
the inhibitory signal coming from the PCs (cerebellar cortex output) with the
excitatory information coming from both CFs and MFs. The PC and DCN lay-
ers are modeled in SpiNNaker by a Spiking Neural Network (SNN) that, instead
of receiving inputs by means of MFs, receives pre-processed signals from the
LWPR receptive fields (RFs) (see Fig. 1).

1.2 Related Work

Cerebellar mechanisms of motor learning and control are not yet completely un-
veiled [11]. By mimicking them, researchers are eager to uncover those unknowns
and at the same time to develop scalable and useful neural control techniques.
Indeed, some techniques have already benefited robotics such as successful simu-
lations where robots are controlled using biologically plausible cerebellar models
[12], [13], [14], virtual experiments with a simulated robot using customized
brain models, e.g. the Neurorobotics Platform (NRP) [15], bio-inspired abstrac-
tion strategies of robotic dynamics and kinematics [16], and adaptive control
schemes for non-linear systems [17], [18], [19]. Besides, realistic cerebellar SNN



Fig. 1: The simplification of the cerebellum’s internal circuit. On the left, the sub-
circuit reproduced using SpiNNaker. On the right, the granular layer represented by
the LWPR algorithm.

implementations on a computer [20], e.g. [21] and on the neuromorphic platform,
Spinnaker [2], e.g. [22] to control a neurorobot are providing promising results.

Different neuromorphic hardware platforms have been developed, but most
of them lack in terms of scalability and usability (FPGAs,GPs) [22]. To this end,
the computer is still the prevailing architecture for neural simulations of non-
large scale neural networks. In this article we present the unique proof-of-concept
system combining SNN and ML technique for controlling a modular robot by
CPU-Spinnaker co-processing.

1.3 Objectives and Paper Organization

Our research area has three main goals: to embed a strategy for a fast learning
of the inverse IMs of the robot module providing an optimized input represen-
tation to the SNN. Indeed, the LWPR algorithm was chosen because it encodes
the inputs like the cerebellar GCs expansively; to develop a neural control for
mimicking the cerebellar modularity, i.e. the neural core can be replicated and
dedicated to a specific robot part or module. Both SpiNNaker and the LWPR
algorithm allow this internal scalability. The first in terms of neural cores and the
latter in terms of incremental locally linear models; and to develop a user-friendly
system in which the robot topology can be easily modified and controlled. The
present paper addresses the first goal and sets out the basis by which the other
two goals are going to be achieved in the future.

The outline for the next sections is as follows: Section 2.1 and 2.2 describe the
robot employed and Spinnaker; Section 2.3 addresses the blocks of the adaptive
control architecture; Section 3 explains the interface with SpiNNaker; Section 4
and 5 show the results giving a discussion and conclusions.



2 Material and Methods

2.1 Fable Robot

Fable [23] is a modular robot based on self-contained 2-DoF modules. It consists
of multiple simple robotic modules that can attach and detach. Connectors be-
tween units allow the creation of arbitrary and changing structures depending
on the task to be solved. Modules are easily addressed by an ID and can be pro-
grammed at different levels of abstraction. Fig. 2 illustrates the Fables network
architecture. The joint commands are transmitted from the computer using a
radio dongle. The system is scalable to more than one Fable module by simply
creating an object instance and indicating the IDs of the modules to take into
account. The Spinnaker board described in the next section paves the way for
large-scale modular neuro-robotic systems.

2.2 Neuromorphic Platform

SpiNNaker [2] is a novel chip based on the ARM processor that was designed to
support large scale spiking neural networks simulations. Inspired by the structure
of the brain, the processing cores were arranged in independently functional and
identical Chip-Multiprocessors (CMP) to achieve robust distributed computing.
Each processing core is self-sufficient in the storage required to hold the code and
the neurons states, while the chip holds sufficient memory to contain synaptic
information for the neurons in the system connected to the local neurons.

2.3 Adaptive Control Architecture

Our control approach is based on the Adaptive Feedback Error Learning (AFEL)
architecture described in [16]. In this work, we included the DCN (see Fig. 3).

Fig. 2: Fable robot is equipped with Dynamixel AX-12A motors. The ULM is embedded
in the control architecture to control a single Fable module. The LWPR engine is run
in the computer and sends the inputs to the SNN implemented in SpiNNaker. The
cerebellar output from SpiNNaker is the joint motor command, which is transmitted
from the computer to Fable motor using a radio dongle. Fable modules can be snapped
together towards different topologies.



The architecture comprises: a trajectory planner which computes the desired
joint angles and velocities (Qdj , ˙Qdj) by inverse kinematics; a Learning Feedback
(LF) controller which generates the τLFj feedback joint torques; and a ULM,
which provides the τffj feed-forward joint torques. The τffj torque contribution
of the ULM is a combination of the τLWPRj

prediction from the LWPR algorithm
and the τcj prediction from the PC-DCN layers for each joint j (see Fig. 3). In
addition, the τtotj global torque is the summation of the τffj and the τLFj

command joint torques.

If the adaptive model is accurate, the resulting τff cancels the robot nonlin-
earities. However, if the inverse dynamic model is not exact, the LF reflects the
feedback error between the desired signal (Qd, Q̇d) and the output of the real
robot (Q, Q̇). The LWPR incrementally learns the inverse IM of the robot module
from the τtot global torques or efferent copy. The LWPR produces τLWPR torques
to minimise the τLF (error related estimate), while the PC-DCN layer provides
τC corrective torques which refine the τtot global command torques. Three plas-
tic sites (PF-PC, PC-DCN, MF-DCN) are represented by the PC-DCN layers,
whose learning benefits from a compact sensorimotor representation of the input
space [17], [24] by means of pk weights provided by the LWPR algorithm. See
below for implementation details.

ULM Inside the Unit Learning Machine, the LWPR algorithm feeds the sen-
sorimotor inputs to N linear local models. The xi inputs consist of cerebellar

Fig. 3: The AFEL control architecture embeds a cerebellum-like model which acts as
a feed-forward controller in the form of ULM. Even though only one ULM was used
to control one Fable module, the system can be scaled up to control more modules by
embedding several ULMs at the same time.



torque commands, desired and current positions and velocities of every joint j.
The LWPR incrementally divides the input space into a set of RFs, so that a
weighting kernel computes a weight pk for each xi data point according to the
distance from the ck center of the kernel in each k local unit. The weight is a
measure of how often an item of xi data falls into the region of validity of each
linear model. The weights are calculated using a Gaussian kernel (1):

pk = exp
(
− 1

2
(xi − ck)TDk(xi − ck)

)
, (1)

where Dk is a positive definite matrix which is called distance matrix (the size
of the RF). This measure is updated on-line iteratively by using an incremental
gradient descent based on stochastic leave-one-out cross validation criterion. In
every iteration, the RF weight is updated in order to assign the new inputs to
the closest RF. The LWPR output is the weighted mean of the linear models:

ŷ =

∑N
k=1 pkŷk∑N
k=1 pk

(2)

In this work, ŷk is the τLWPR torque shown in Fig. 3. The LWPR learns
the τtot efferent copy. As it occurs in the cerebellum, the PC-DCN inputs are
transmitted through a bank of filters, located in the GC layer. In our approach,
this bank of filters is represented by the the pk(t) signals computed by the
gaussian kernel in (1). Those pk weights are driven to the synapses with the
PC layer. The data flow along the SNN is illustrated in Fig. 4. First, the pk
input weights coming from the LWPR algorithm are transformed into spikes.
The spiking rate of each PF is defined as one spike every Ti ms. The spikes are
transmitted along the spiking network consisting of one pair of PCs and DCNs
for each joint. Finally, the DCN output is calculated as inversely proportional
to the DCN spike frequency rate. We selected the Leaky Integrate and Fire
model with fixed threshold and decaying-exponential post-synaptic current as
the neuron model since it showed smooth trajectories and fast computations. To
apply memory consolidation in the SNN, we chose the Spike-Timing-Dependent
plasticity (STDP) [25] whose synaptic learning is induced by tight temporal
correlation between a pre- and a post-synaptic spike event.

LF Controller The Learning Feedback controller overcomes the lack of a pre-
cise robot arm dynamic model, ensures the stability of the system and enables
the control architecture to achieve a better performance [16]. Further details
about the LF controller are provided in [16]. Its gains were tuned to Kp = 7.5,
Kv = 6.4 and Ki = 0.22 for the Fable robot.

3 Interface

PyNN language [26] was selected to implement the SNN since it can run on a
number of simulators with minor modifications of the code. A socket interface



Fig. 4: The encoding and decoding principle behind the interface with SpiNNaker. The
pk weights coming from the LWPR are encoded into spiking rates so as to excite the
population. Thereafter, the DCN spiking rate is transformed into torques.

Fig. 5: Schematic of the connections needed for the integration between the LWPR,
SpiNNaker and the robot.

combined with thread functions was implemented to allow the communication
between SpiNNaker and Fable robot. On the one hand, the socket interface
enables the system to push and read data on-line between scripts that are running
different python versions. The interface updates pk weights every 5ms and the
control loop frequency is 150Hz. On the other hand, the firing rate is calculated
to deliver the cerebellar output to the robot.

4 Evaluation

To evaluate the control system performance, we examined how the tracking
errors became compensated during the task of following the desired trajectory
defined in (3), where Qj is the angle of the j-th joint, A is the amplitude of the
circular trajectory, and Cj was set to 0 and π/2 for joints 1 and 2, respectively.



Qj = A

(
1

2πf

)2

sin(2πft+ Cj), (3)

4.1 Control performance

We measured the learning performance of the system in terms of the normalized
mean squared error (nMSE). The error was considered as the difference between
the desired and real position of each joint during the experiment. To this end,
20k iterations of the control loop, equivalent to 200 circles iterations, were run
commanding the real robot to trace out a circular trajectory with its end-effector.

Fig. 6 shows how the nMSE is decreasing over consecutive iterations. It is re-
markable the fast adaptation. Furthermore we evaluated the torque contribution
along the learning process by the performance ratios of torque components to the
τtot global torque applied to the robot module plant. Fig. 7 shows how the aver-
age values of the ratios evolve along the learning process. The LWPR algorithm
progressively learns the τtot global torque which means that it acts as inverse
IM for the robot module dynamics. LF torques decrease over time according to
the decrease of the nMSE, and the contribution from the PC-DCN layers reveals
the slow memory consolidation function which is achieved within the LWPR and
more slowly achieved in the PC-DCN layers as shown in logarithmic scale.
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Fig. 6: Performance test. The performance of our neuro-controller during real-time
simulation on computer and SpiNNaker platform in terms of the nMSE.

In order to check the advantages of the presented approach, we compared it
with other three cases enumerated in Fig. 8 with labels (2), (3) and (4). In case
(2) only the LF was active. In case (3) the PC-DCN layer was deactivated. In
case (4) the LWPR was learning but not delivering its torque to the control loop.
Notice the large tracking error of case (2) and how the PC-DCN contribution
(case 4) leads to a faster decrease of the nMSE compared with case (3). It is
worth noting that the improvement of our approach is due to the addition of
the DCN layer, and not due to the integration of SpiNNaker. Nevertheless, we
integrated SpiNnaker aiming at scaling up the spiking cerebellar model in the
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Fig. 7: Performance test. Ratios of torque contributions of the main blocks to the global
torque averaged among joints.
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Fig. 8: Comparison of the averaged nMSE among joints for four different cases.

future. SpiNNaker will be highly beneficial when implementing large amounts
of spiking neurons and synapses in real time. However, CPU-based system may
show issues in the performance and power consumption.

4.2 Robustness tests

The robustness test consisted in switching the amplitude of the desired trajec-
tory every 15 repetitions of the circle trajectory. Fig. 9 shows that the approach
is robust and self-adaptive to fast and repetitive changes. Furthermore, results in
Fig. 10 indicate that the LWPR learning is incremental and so, the LF decreases
its feedback torque contribution eventually. In the same way, the PC-DCN con-
tribution depends on the LWPR algorithm due to its capability of incorporating
the IM and to pk signals, which correspond to the cerebellar granular weighting
kernels.
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Fig. 9: Robustness test. nMSE result when forcing the system to relearn different am-
plitudes of the trajectory by switching the amplitude of the target trajectory ev-
ery 15 circle iterations. The amplitude values were chosen randomly between A ∈
{500, 700, 900}deg/s2. Higher nMSE correspond to higher amplitudes.

5 Conclusions

We proposed a new Adaptive Feedback Error Learning scheme for the motor
control and learning of a 2-DoF Fable module. The neural control is still based
on the combination of a ML engine and a cerebellar-like model to both opti-
mize the input space representation and to abstract the inverse IM. However,
in this work, the cerebellar-like component is integrated with a spiking DCN
layer running on SpiNNaker. This work was validated on a physical robot. We
overcame the interface issues between SpiNNaker and Fable allowing an on-line
control. The presented robustness and performance results were good showing
an increase of the learning speed of the inverse IM while providing an optimized
input representation. We will also integrate distinct sensors and actuators to
check if it benefits the control and learning of the system.

SpiNNaker was designed to simulate large, biologically realistic, spiking neu-
ral networks in real time. We took advantage of only a small portion of the
capability of SpiNNaker. Nevertheless, this paper shows the proof of principle
for future achievements in the bio-inspired control and learning of robots using
SpiNNaker. Further research will be needed to control more than one module
and to benefit from this modular control strategy. Assembling distinct modular
configurations will allow researchers and developers to carry out a variety of
tasks with minor modifications. To this aim, all robot modules could be linked
to identical ULMs. In future, we will test the system controlling more complex
modular setups and study how to learn and store multiple IMs of the robot to
face new challenges by combining previous experiences.
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