83 research outputs found

    Glioblastoma migration along constraints with different geometries: how to mimick brain parenchyma invasion?

    Get PDF
    International audienceA microfluidic device is demonstrated to analyze glioblastoma migration along constraints with precisely designed geometries. This in-vitro model reveals physiologically relevant glioma invasion scenarios: full migration along constraints, suspended motion by extreme constriction, and limited migration associated with the ejection of plasma membrane particles due to the continuing extension

    Durability of nanosized oxygen-barrier coatings on polymers

    Full text link

    Filamin A, a key regulatory actor of high-grade glioma invasion mechanisms : involvement in urotensin II chemokine receptor signalization and trafficking

    No full text
    Les glioblastomes multiformes (GBM) sont les tumeurs les plus frĂ©quentes et agressives du systĂšme nerveux central. Le traitement standard des GBM suit le « Protocole de Stupp » qui consiste en une rĂ©section chirurgicale de la tumeur la plus large possible, suivie d’une radiothĂ©rapie/chimiothĂ©rapie au temozolomide (TMZ) concomitante. MalgrĂ© ce traitement lourd de premiĂšre ligne, les patients atteints de GBM prĂ©sentent une survie mĂ©diane de seulement 14,6 mois. MĂȘme si la rĂ©section semble la plus complĂšte possible, le caractĂšre diffus et invasif des cellules de GBM est Ă  l’origine de rĂ©cidives quasi-systĂ©matiques en bordure de la cavitĂ© de rĂ©section. L’invasion du parenchyme cĂ©rĂ©brale sain par les cellules de GBM, enbordure ou Ă  distance de la zone de rĂ©section, constitue par consĂ©quent un enjeu thĂ©rapeutique majeur. Ces mĂ©canismes d’invasion sont portĂ©s par des transformations cellulaires liĂ©es aux contraintes environnementales telles que l’hypoxie et l’angiogenĂšse, responsables d’une transition mĂ©senchymateuse (TM) principalement contrĂŽlĂ©e par les facteurs de transcriptions STAT3 et CEBPα qui stimulent 70% des gĂšnes secondaires mĂ©senchymateux. L’hypoxie associĂ©e Ă  la TM entraĂźnent notamment la surexpression de rĂ©cepteurs Ă  7 domaines transmembranaires couplĂ©s aux protĂ©ines G (RCPGs) de chimiokines, entres autres. Le RCPG chimiotactique le plus largement Ă©tudiĂ© dans le GBM est le CXCR4 relayant ses effets promigratoires via les couplages et les voies Gαi/PIÎłK/PIPÎł et Gα12/13/Rho/ROCK ainsi que son endocytose clathrine-dĂ©pendante et le recyclage relayĂ© par l’activitĂ© de ÎČ-arrestines. Des travaux dĂ©jĂ  rĂ©alisĂ©s dans notre Ă©quipe ont aussi pu mettre en Ă©vidence que le rĂ©cepteur UT du neuropeptide urotensine II (UII) se comporte comme un rĂ©cepteur de chimiokine pouvant stimuler la migration directionnelle de cellules de GBM via l’activation sĂ©quentielle de Gαi/PIÎłK/PIPÎł puis de Gα12/13/Rho/ROCK permettant la polarisation cellulaire, l’émission de lamellipodes, la polymĂ©risation des fibres de stress d’actine, et la contraction cellulaire. Ainsi il apparait que la redondance d’expression et de couplages des RCPGs chimiotactiques constitue un verrou majeur en termes de ciblage thĂ©rapeutique de l’un de ces systĂšmes. C’est sur la base de ces observations que nous avons entrepris d’isoler de nouveaux partenaires protĂ©iques communs Ă  ces rĂ©cepteurs pouvant ĂȘtre la source de dĂ©veloppement de nouvelles stratĂ©gies anti-invasives.Multiform glioblastoma (GBM) are the most frequent and aggressive tumor of the central nervous system (CNS). The standard treatment therapy for GBM follows the “Stupp protocol”consisting in the most complete surgical resection combined with radio/chemotherapy with temozolomide (TMZ). Despite this heavy first line treatment, patients with GBM display a survival median of only 14.6 months. Even if the resection as large as possible, the diffuse properties of GBM cells leads to a quasi-systematic invasion of the margin of the resection cavity. The healthy brain parenchyma invasion by GBM cells, in margin or at distance of the resection cavity, constitutes a main therapeutic issue. These invasion mechanisms are carried by cell transformations caused by the microenvironment such as hypoxia and angiogenesis responsible for mesenchymal transition (MT) mainly controlled by two transcription factors STATÎł and CEBPα which stimulate 70% of secondary mesenchymal genes. Hypoxia associated with MT triggers the expression of chemokine G protein-coupled receptor (GPCRs). The most studied chemotactic GPCR in GBM is CXCR4 which mediates promigratory effects through Gαi/PIÎłK/PIPÎł and Gα13/Rho/ROCK as well as its endocytosis and recycling mediated by ÎČ-arrestins. Our team already demonstrated that the UT receptor of the neuropeptide urotensin II (UII) behaves like a chemokine receptor and stimulates GBM directional migrationby Gαi/PIÎłK/PIPÎł and Gα13/Rho/ROCK allowing cell polarization, lamellipodia formation, actin stress fiber polymerization and cell contraction. Thus it appears that the expression and coupling redundancy of chemotactic GPCRs constitute a major brake for the development oftargeted therapy against these systems. Based on these observations, we proposed to identify new protein partners common to these chemokine GPCRs which could then be targeted by future anti-invasive therapies. First, we validated the systematic redundancy of expression of CXCR4/SDF-1α and UT/UII systems by immunohistochemical studies carried in various patient glioma grades (Collaboration with Pr A. LaquerriĂšre, CHU Rouen Hospital). These systems are more strongly co-expressed in pseudopalisadic peri-necrotic hypoxic GBM areas. A two-hybrid screening of a bank of human brain cDNA allowed us to demonstrate that the 332-352 C-terminal amino acid sequence of UT interacts with the repeat D19-D20 domains of a platform protein called Filamin A (FlnA)

    La Filamine A, acteur central relayant les mécanismes d'invasion des gliomes de haut-grade : implication dans la signalisation et le trafic du récepteur chimiotactique de l'urotensine II

    No full text
    Multiform glioblastoma (GBM) are the most frequent and aggressive tumor of the centralnervous system (CNS). The standard treatment therapy for GBM follows the “Stupp protocol”consisting in the most complete surgical resection combined with radio/chemotherapy withtemozolomide (TMZ). Despite this heavy first line treatment, patients with GBM display asurvival median of only 14.6 months. Even if the resection as large as possible, the diffuseproperties of GBM cells leads to a quasi-systematic invasion of the margin of the resectioncavity. The healthy brain parenchyma invasion by GBM cells, in margin or at distance of theresection cavity, constitutes a main therapeutic issue. These invasion mechanisms are carriedby cell transformations caused by the microenvironment such as hypoxia and angiogenesisresponsible for mesenchymal transition (MT) mainly controlled by two transcription factorsSTAT3 and CEBPα which stimulate 70% of secondary mesenchymal genes. Hypoxiaassociated with MT triggers the expression of chemokine G protein-coupled receptor (GPCRs).The most studied chemotactic GPCR in GBM is CXCR4 which mediates promigratory effectsthrough Gαi/PI3K/PIP3 and Gα13/Rho/ROCK as well as its endocytosis and recycling mediatedby ÎČ-arrestins. Our team already demonstrated that the UT receptor of the neuropeptideurotensin II (UII) behaves like a chemokine receptor and stimulates GBM directional migrationby Gαi/PI3K/PIP3 and Gα13/Rho/ROCK allowing cell polarization, lamellipodia formation,actin stress fiber polymerization and cell contraction. Thus it appears that the expression andcoupling redundancy of chemotactic GPCRs constitute a major brake for the development oftargeted therapy against these systems. Based on these observations, we proposed to identifynew protein partners common to these chemokine GPCRs which could then be targeted byfuture anti-invasive therapies.First, we validated the systematic redundancy of expression of CXCR4/SDF-1α and UT/UIIsystems by immunohistochemical studies carried in various patient glioma grades(Collaboration with Pr A. LaquerriĂšre, CHU Rouen Hospital). These systems are more stronglyco-expressed in pseudopalisadic peri-necrotic hypoxic GBM areas. In order to identify whether this interaction between FlnA and UT could exert a functionalimpact in GBM activity, we evaluated the FlnA mRNA expression levels by means of RNAseqdata from The Cancer Genome Atlas (TCGA) and IVYgap (IVY glioblastoma atlas project)data bases. These analyses highlighted that FlnA expression levels are correlated with gliomagrades, showing the highest levels in IDH1/2 (Isocitrate Dehydrogenase 1 & 2) wild typemesenchymal GBM. FlnA overexpression is shown associated with a decrease of overallsurvival and earlier recurrence. Moreover IVYgap data analysis combined withimmunolabelings performed on glioma patient samples, revealed that is strongly express inpseudopalisades and hypoxic areas as well as in microvascular proliferation areas. Additionalanalysis FlnA-associated ontological gene networks based on genes which expression is themost correlated with FlnA in glioma, stressed main networks associated with PI3K pathway,cell polarization and adhesion or cytoskeleton regulation.In order to study FlnA intrinsic properties in GBM activity, FlnA expression levels were firstconfirmed in GBM cell lines under normoxia and hypoxia. Hypoxia triggered FlnA mRNAoverexpression as well as increased FlnA and UT protein forms. We generated from the U87GBM cell line, a KnockOut (KO) U87 cell line deleted for the gene encoding FlnA by usingthe CRISPR/Cas9 technology. FlnA deletion in U87 cells is associated with a significantdecrease of their proliferative capacities, a mechanism characterized by cell accumulation inG1 cell cycle phase, suggesting a slow progression towards S phase and accumulation insenescence. Moreover, FlnA depletion was shown to sensitize U87 cells to TMZ andIrininotecan (CPT-11) tested at low concentrations (10-7M of each). Regarding motility, U87cells displayed spontaneous production of lamellipodia, actin stress fibers and focal adhesionpoints, responsible for “mesenchymal endogenous” migration. However, FlnAKO cellsexhibited a significant decrease of their motility associated with a reduction of focal adhesionpoints labeled by an anti phospho_paxillin antibody, associated with a major inhibition of actinstress fiber polymerization. The quantification of the number and the type of membraneprotrusions on the two cell lines indicated that U87-FlnAKO are unable to generate and stabilizelamellipodia. These observations show that FlnA is essential for actin stress fiberpolymerization, lamellipodia formation and focal adhesion maturation essential for chemotacticdirectional migration.Previous work of our team demonstrated that UT receptor mediates glioma chemotacticmigration through Gαi/PI3K/PIP3 and Gα13/Rho/ROCK allowing lamellipodia expansion andvinculin focal adhesion maturation. In this study we showed that the absence of FlnA preventsadhesion/de-adhesion cycles stimulated by the UII (10-8M)-induced UT activation, as well asthe directional migration in response to UII (10-12 M, 10-9 M and 10-7 M) in the Boyden chamberassay. This strongly suggests that FlnA may control GPCR-dependent chemotactic migrationin general and UT in particular. We next investigated whether this interaction would play a role in UT couplings andtrafficking. In the presence of FlnA, U87 cells expressing recombinant UT-eYFP uncoupled toGαq, but precoupled within lamellipodia with Gαi , while this colocalization increased withinthe cytosol after UII treatment. In U87-FlnAKO cells, this Gαi precoupling was not found butUT appeared mainly colocalized with Gαq mainly after UII treatment. This new couplingacquisition was confirmed by specific calcium mobilization after UII treatment in U87-FlnAKOcells. Thus, FlnA seems essential for UT precoupling to Gαi and Gαq exclusion in GBM cells.During a sustain activation, UT receptor is present in membrane ruffles of U87 cells and couldbe internalized and endocytate after UII treatment (10-7M and 10-9M). These membrane rufflesare absent in FlnAKO cells and UT was expressed at the plasma membrane even after sustainedUII treatment. We conclude here that FlnA plays a key role in the transport regulation of UT tothe lamellipodia through ruffles expansion and in UT internalization/endocytosis process.Reciprocally, we demonstrated that UT activation in U87 cells triggered FlnA cleavagecharacterized by the detection of FlnA band at 110-130 kDa in Western blot, associated with aUT relocalization at the plasma membrane. These mechanisms are inhibited in presence ofpertussis toxin (PTX) which inhibits Gαi activity while cells still emitted lamellipodia possiblyvia free complexes allowing PI3K activation. Results of the receptor distributionquantification suggested that receptor relocation after stimulation is dependent on Gαi activity,PKA inhibition that would favor calpains activity to induce FlnA proteolysis and UTredistribution after UII stimulation.Finally, we performed orthotropic U87 and U87-FlnAKO cells xenograft in the striatum ofNMRI/Nude mice. We observed a significant survival improvement of U87-FlnAKO injectedmice compared with control mice injected with U87 cells. Immunolabelings performed on braintumor slices obtained from sampled injected mouse brains at 15 days post-injection, showed adrastic modification of the U87-FlnAKO tumor phenotype. Indeed, U87-GBM displayed anecrotic tumor core associated with a highly invasive phenotype, sometimes multifocal withstrong and intense FlnA and MMP-9 labelings, showings colocalisation between FlnA and UTin invasive processes, around UII-expressing components. U87-FlnAKO GBM rather exhibiteda highly circumscribe phenotype accompanied by the loss of FlnA, UT and MMP-9 expressionas well as by occurrence of a normal vascularization. However the CD44 labeling was notmodified in the presence or the absence of FlnA in U87 GBM cells, suggesting that FlnAdeletion is not controlling expression all mesenchymal markers, but rather repressesdownstream GBM invasive properties.Altogether these data show that FlnA plays a major role in proliferation and adhesionprocesses in GBM cells. Moreover, FlnA directly controls UT receptor signalings byconditioning in one hand its precoupling to Gαi and on the other hand by allowing its rapid anddynamic internalization/endocytosis and its recycling to the lamellipodia. Thus it is possible todevelop therapeutic strategies specifically targeting FlnA/UT interaction in order to preventhealthy brain invasion mediated by UT, and more generally, by all chemokine receptorsinteracting with FlnA.Les glioblastomes multiformes (GBM) sont les tumeurs les plus frĂ©quentes et agressives dusystĂšme nerveux central. Le traitement standard des GBM suit le « Protocole de Stupp » quiconsiste en une rĂ©section chirurgicale de la tumeur la plus large possible, suivie d’uneradiothĂ©rapie/chimiothĂ©rapie au temozolomide (TMZ) concomitante. MalgrĂ© ce traitementlourd de premiĂšre ligne, les patients atteints de GBM prĂ©sentent une survie mĂ©diane deseulement 14,6 mois. MĂȘme si la rĂ©section semble la plus complĂšte possible, le caractĂšre diffuset invasif des cellules de GBM est Ă  l’origine de rĂ©cidives quasi-systĂ©matiques en bordure de lacavitĂ© de rĂ©section. L’invasion du parenchyme cĂ©rĂ©brale sain par les cellules de GBM, enbordure ou Ă  distance de la zone de rĂ©section, constitue par consĂ©quent un enjeu thĂ©rapeutiquemajeur. Ces mĂ©canismes d’invasion sont portĂ©s par des transformations cellulaires liĂ©es auxcontraintes environnementales telles que l’hypoxie et l’angiogenĂšse, responsables d’unetransition mĂ©senchymateuse (TM) principalement contrĂŽlĂ©e par les facteurs de transcriptionsSTAT3 et CEBP qui stimulent 70% des gĂšnes secondaires mĂ©senchymateux. L’hypoxieassociĂ©e Ă  la TM entraĂźnent notamment la surexpression de rĂ©cepteurs Ă  7 domainestransmembranaires couplĂ©s aux protĂ©ines G (RCPGs) de chimiokines, entres autres. Le RCPGchimiotactique le plus largement Ă©tudiĂ© dans le GBM est le CXCR4 relayant ses effets promigratoires via les couplages et les voies Gαi/PI3K/PIP3 et Gα12/13/Rho/ROCK ainsi que sonendocytose clathrine-dĂ©pendante et le recyclage relayĂ© par l’activitĂ© de ÎČ-arrestines. Destravaux dĂ©jĂ  rĂ©alisĂ©s dans notre Ă©quipe ont aussi pu mettre en Ă©vidence que le rĂ©cepteur UT duneuropeptide urotensine II (UII) se comporte comme un rĂ©cepteur de chimiokine pouvantstimuler la migration directionnelle de cellules de GBM via l’activation sĂ©quentielle deGαi/PI3K/PIP3 puis de Gα12/13/Rho/ROCK permettant la polarisation cellulaire, l’émission delamellipodes, la polymĂ©risation des fibres de stress d’actine, et la contraction cellulaire. Ainsiil apparait que la redondance d’expression et de couplages des RCPGs chimiotactiquesconstitue un verrou majeur en termes de ciblage thĂ©rapeutique de l’un de ces systĂšmes. C’estsur la base de ces observations que nous avons entrepris d’isoler de nouveaux partenairesprotĂ©iques communs Ă  ces rĂ©cepteurs pouvant ĂȘtre la source de dĂ©veloppement de nouvellesstratĂ©gies anti-invasives.Dans un premier temps, nous avons validĂ© la redondance d’expression systĂ©matique dessystĂšmes CXCR4/SDF-1α et UT/UII par immunomarquages rĂ©alisĂ©s sur des prĂ©lĂšvements dediffĂ©rents grades de gliome de patients (Collaboration avec Pr A. LaquerriĂšre, CHU Rouen).Ces systĂšmes sont plus particuliĂšrement co-surexprimĂ©s dans les rĂ©gions hypoxiquespseudopalissadiques pĂ©ri-nĂ©crotiques des GBM. Afin d’identifier si une telle interaction entre le rĂ©cepteur UT et la FlnA peut constituer unmĂ©canisme fonctionnel dans l’activitĂ© des GBM, nous avons Ă©valuĂ© les niveaux d’expressionde la FlnA Ă  l’aide des informations de RNAseq de la base de donnĂ©es du TCGA (The CancerGenome Atlas) et de IVYgap (IVY glioblastome atlas project). Ces analyses de donnĂ©es bioinformatiquesnous ont permis de mettre en Ă©vidence que les niveaux d’expressions de FlnAsont corrĂ©lĂ©es aux grades des gliomes, montrant les niveaux les plus Ă©levĂ©s dans les GBMmĂ©senchymateux au statut IDH1/2 (isocitrate dĂ©shydrogĂ©nase1/2) sauvage. La surexpressionde FlnA est associĂ©e Ă  une diminution de la survie globale et une rĂ©cidive plus prĂ©coce. De plus,les Ă©tudes des donnĂ©es de la base IVYgap combinĂ©es aux immunomarquages rĂ©alisĂ©s sur lesprĂ©lĂšvements de gliomes de patients, mettent en Ă©vidence que la FlnA est trĂšs fortementexprimĂ©e dans les rĂ©gions hypoxiques et pseudopalissadiques ainsi que dans les rĂ©gions deprolifĂ©ration microvasculaire. L’analyse de rĂ©seaux ontologiques rĂ©alisĂ©e Ă  partir des donnĂ©esde niveaux d’expression des gĂšnes dont l’expression est corrĂ©lĂ©e Ă  la FlnA dans les gliomes, arĂ©vĂ©lĂ©e des rĂ©seaux associĂ©s Ă  la voie PI3K, Ă  la polarisation cellulaire, aux adhĂ©sions ou Ă  larĂ©gulation du cytosquelette.Afin d’étudier les propriĂ©tĂ©s intrinsĂšques de la FlnA dans la rĂ©gulation de l’activitĂ© descellules de GBM, les niveaux d’expression de FlnA ont Ă©tĂ© confirmĂ©s dans des lignĂ©es de GBM,en conditions normoxiques et hypoxiques, cette derniĂšre permettant l’augmentationtranscriptionnelle des ARNm codant la FlnA, et protĂ©ique de la FlnA et de l’UT. Nous avons Ă partir de la lignĂ©e de GBM U87, gĂ©nĂ©rĂ© une lignĂ©e KnockOut (KO) dĂ©lĂ©tĂ©e du gĂšne codant laFlnA grĂące au systĂšme CRISPR/Cas9. L’absence de FlnA dans la lignĂ©e U87, est associĂ©e Ă une rĂ©duction des capacitĂ©s prolifĂ©ratives, un mĂ©canisme associĂ© Ă  une accumulation de cellulesen phase G1 du cycle cellulaire, suggĂ©rant une faible progression des cellules vers la phase S etl’augmentation de la senescence. De plus, la dĂ©lĂ©tion de la FlnA sensibilise les cellules U87aux chimiothĂ©rapies TMZ et d’Irinotecan (CPT-11) testĂ©es Ă  faibles concentrations (10-7M,chaque). En termes de motilitĂ©, les cellules U87 montrent spontanĂ©ment la prĂ©sence delamellipodes, de fibres de stress d’actine et de points focaux d’adhĂ©sion, responsables d’unemigration de type « mĂ©senchymateuse endogĂšne ». En revanche, les cellules FlnAKOprĂ©sentent une diminution significative de leur motilitĂ© associĂ©e Ă  la rĂ©duction du nombred’adhĂ©sions focales marquĂ©es par un anti-Phospho_paxilline, ainsi qu’à une inhibition majeurede la polymĂ©risation des fibres de stress d’actine. La quantification du nombre et du type deprotrusions membranaires sur ces 2 lignĂ©es indique que les cellules U87-FlnAKO sont dansl’incapacitĂ© de gĂ©nĂ©rer et de stabiliser des lamellipodes. Ces observations montrent que la FlnAest essentielle pour la polymĂ©risation des fibres de stress d’actine, formation de lamellipodes,et la maturation des points focaux d’adhĂ©sion indispensables Ă  la migration chimiotactiquedirectionnelle.Les travaux prĂ©cĂ©dant de l’équipe avaient montrĂ© que le rĂ©cepteur UT relaye la migrationchimiotactique de gliome via l’activation de Gαi/PI3K/PIP3 et Gα12/13/Rho/ROCK permettantl’expansion du lamellipode et la maturation de points focaux d’adhĂ©sion comportant lavinculine. Dans la prĂ©sente Ă©tude nous montrons que l’absence de FlnA prĂ©vient les cyclesd’adhĂ©sion/dĂ©-adhĂ©sion provoquĂ©es par la stimulation de l’UT par l’UII (10-8M), ainsi que lamigration directionnelle en chambre de Boyden en rĂ©ponse Ă  des concentrations croissantesd’UII (10-12 M, 10-9 M et 10-7 M), suggĂ©rant que la FlnA contrĂŽle la migration chimiotactiquedĂ©pendante d’un RCPG tel que l’UT. Nous avons ensuite recherchĂ© si la FlnA Ă©tait impliquĂ©e dans les couplages du rĂ©cepteur UTet son trafic cellulaire. En prĂ©sence de FlnA dans les cellules U87 exprimant le rĂ©cepteur UTeYFPrecombinant, les donnĂ©es immunocytochimiques montrent que le rĂ©cepteur UT n’est pasassociĂ© Ă  Gαq, mais est co-localisĂ© voire prĂ©couplĂ© Ă  la protĂ©ine Gαi au lamellipode et que cetteco-localisation est augmentĂ©e au niveau intracellulaire aprĂšs un traitement par l’UII. Dans lescellules U87-FlnAKO, ce prĂ©couplage Gαi n’est pas retrouvĂ©, alors que l’UT se trouve colocalisĂ©avec Gαq principalement aprĂšs traitement par l’UII. Cette acquisition de couplage estconfirmĂ©e par la stimulation de la mobilisation calcique spĂ©cifiquement dĂ©tectĂ©e dans lescellules U87-FlnAKO traitĂ©es par des concentrations croissantes d’UII. Ainsi, la FlnA sembleessentielle au prĂ©-couplage Gαi et l’exclusion du couplage Gαq dans les cellules de GBM. Lorsd’une activation plus prolongĂ©e, le rĂ©cepteur l’UT, prĂ©sent dans des ruffles membranaires(ondulations de la membrane plasmique en prĂ©paration d’une expansion membranaire) descellules U87 et ĂȘtre internalisĂ©/endocytĂ© aprĂšs traitement par l’UII (10-7M, 10-9M). Ces rufflesmembranaires sont absents dans les cellules U87-FlnAKO et l’UT est prĂ©sent Ă  la membraneplasmique y compris aprĂšs un traitement prolongĂ© en prĂ©sence d’UII, suggĂ©rant que la FlnAjoue un rĂŽle central dans la rĂ©gulation du transport au lamellipode et au processusd’internalisation du rĂ©cepteur UT. RĂ©ciproquement, nous avons aussi montrĂ© que l’activationdu rĂ©cepteur UT entraĂźne dans les cellules U87 un clivage de la FlnA et une bande Ă  110-130kDa dĂ©tectĂ©e en Western blot, ainsi qu’une relocalisation du rĂ©cepteur UT Ă  la membraneplasmique. Ces mĂ©canismes sont bloquĂ©s en prĂ©sence de pertussis toxine (PTX) qui inhibel’activitĂ© de Gαi, alors que les cellules Ă©mettent toujours de larges lamellipodes possiblementgrĂące au complexe libĂ©rĂ© et l’activation de PI3K. Les rĂ©sultats obtenus lors desquantifications de la distribution du rĂ©cepteur dans les diffĂ©rents compartiments cellulairessuggĂšrent donc que le clivage de la FlnA dĂ©pendant de la protĂ©ine Gi capable potentiellementd’inhiber l’activitĂ© d’une PKA et de stimuler de fait les calpaĂŻnes, est nĂ©cessaire Ă l’accumulation du rĂ©cepteur au lamellipode suite Ă  une stimulation par l’UII.Enfin, nous avons rĂ©alisĂ© des xĂ©nogreffes orthotopiques des lignĂ©es U87 et U87-FlnAKOdans des lignĂ©es de souris Nude/NMRI. Cette Ă©tude a permis de mettre en Ă©vidence uneamĂ©lioration significative de la survie des animaux xĂ©nogreffĂ©s au niveau striatal avec la lignĂ©eU87-FlnAKO comparativement aux animaux contrĂŽle. Des sĂ©ries d’immunomarquages rĂ©alisĂ©ssur des cerveaux d’animaux prĂ©levĂ©s de maniĂšre prĂ©coces (15 jours), ont permis de mettre unmettre en Ă©vidence une modification majeure du phĂ©notype des GBM issus des cellules U87-FlnAKO. En effet, les GBM-U87 prĂ©sentent un coeur tumoral plutĂŽt d’apparence nĂ©crotique etune morphologie hautement invasive, parfois multifocale, accompagnĂ©e d’un fort marquage dela FlnA et MMP-9 (Matrix Metallopeptidase 9), montrant une co-localisation des marquagesUT et FlnA dans les processus invasifs et une angiogenĂšse anormale. A contrario, les GBMU87-FlnAKO prĂ©sentent un phĂ©notype hautement circonscrit accompagnĂ© d’une perte desmarquages FlnA, UT et MMP-9, et d’une vascularisation plutĂŽt normalisĂ©e. Cependant lapersistance de la dĂ©tection du marqueur CD44 dans ces tumeurs suggĂšre que l’absence de FlnAn’impacte pas l’expression de tous les marqueurs mĂ©senchymateux, mais rĂ©prime en aval lescapacitĂ©s invasives des cellules U87.L’ensemble de ces donnĂ©es montre que la FlnA joue un rĂŽle majeur dans la rĂ©gulation desphĂ©nomĂšnes de prolifĂ©ration et d’adhĂ©sion liĂ©s Ă  la migration des cellules de GBM. De plus laFlnA contrĂŽle directement la signalisation du rĂ©cepteur UT en conditionnant d’une part sonprĂ©coulage Ă  la protĂ©ine Gαi et d’autre part en permettant l’internalisation/endocytosedynamique du rĂ©cepteur aprĂšs stimulation et son recyclage au lamellipode. Ainsi il estenvisageable de dĂ©velopper des stratĂ©gies thĂ©rapeutiques ciblant spĂ©cifiquement l’interactionUT/FlnA afin de prĂ©venir l’invasion du parenchyme sain relayĂ©e par l’activation de l’UT, maisde maniĂšre plus gĂ©nĂ©rale, par l’ensemble des systĂšmes chimiokines interagissant avec la FlnA

    Glioblastoma migration along constraints with different geometries: how to mimick brain parenchyma invasion?

    No full text
    International audienceA microfluidic device is demonstrated to analyze glioblastoma migration along constraints with precisely designed geometries. This in-vitro model reveals physiologically relevant glioma invasion scenarios: full migration along constraints, suspended motion by extreme constriction, and limited migration associated with the ejection of plasma membrane particles due to the continuing extension

    The core autophagy protein ATG9A controls dynamics of cell protrusions and directed migration

    No full text
    International audienceChemotactic migration is a fundamental cellular behavior relying on the coordinated flux of lipids and cargo proteins toward the leading edge. We found here that the core autophagy protein ATG9A plays a critical role in the chemotactic migration of several human cell lines, including highly invasive glioma cells. Depletion of ATG9A protein altered the formation of large and persistent filamentous actin (F-actin)–rich lamellipodia that normally drive directional migration. Using live-cell TIRF microscopy, we demonstrated that ATG9A-positive vesicles are targeted toward the migration front of polarized cells, where their exocytosis correlates with protrusive activity. Finally, we found that ATG9A was critical for efficient delivery of ÎČ1 integrin to the leading edge and normal adhesion dynamics. Collectively, our data uncover a new function for ATG9A protein and indicate that ATG9A-positive vesicles are mobilized during chemotactic stimulation to facilitate expansion of the lamellipodium and its anchorage to the extracellular matrix
    • 

    corecore