199 research outputs found

    A simple connection between the near- and mid-infrared emission of galaxies and their star-formation rates

    Full text link
    We have measured the near-infrared colors and the fluxes of individual pixels in 68 galaxies common to the Spitzer Infrared Nearby Galaxies Survey and the Large Galaxy Atlas Survey. Each galaxy was separated into regions of increasingly red near-infrared colors. In the absence of dust extinction and other non-stellar emission, stellar populations are shown to have relatively constant NIR colors, independent of age. In regions of high star formation, the average intensity of pixels in red-excess regions (at 1.25, 3.6, 4.5, 5.6, 8.0 and 24 micron) scales linearly with the intrinsic intensity of Halpha emission, and thus with the star-formation rate within the pixel. This suggests that most NIR-excess regions are not red because their light is being depleted by absorption. Instead, they are red because additional infrared light is being contributed by a process linked to star-formation. This is surprising because the shorter wavelength bands in our study (1.25 micron-5.6 micron) do not probe emission from cold (10-20 K) and warm (50-100 K) dust associated with star-formation in molecular clouds. However, emission from hot dust (700-1000 K) and/or Polycyclic Aromatic Hydrocarbon molecules can explain the additional emission seen at the shorter wavelengths in our study. The contribution from hot dust and/or PAH emission at 2-5micron and PAH emission at 5.6 and 8.0 micron scales linearly with warm dust emission at 24 micron and the intrinsic Halpha emission. Since both are tied to the star-formation rate, our analysis shows that the NIR excess continuum emission and PAH emission at ~1-8 micron can be added to spectral energy distribution models in a very straight-forward way, by simply adding an additional component to the models that scales linearly with star-formation rate.Comment: Accepted to ApJ December 1, 2010, Issue 724 -2. 16 pages, 8 colour figures, 1 online figure to be available at publicatio

    Extreme gas fractions in clumpy, turbulent disk galaxies at z~0.1

    Full text link
    In this letter we report the discovery of CO fluxes, suggesting very high gas fractions in three disk galaxies seen in the nearby Universe (z ~ 0.1). These galaxies were investigated as part of the DYnamics of Newly Assembled Massive Objects (DYNAMO) survey. High-resolution Hubble Space Telescope imaging of these objects reveals the presence of large star forming clumps in the bodies of the galaxies, while spatially resolved spectroscopy of redshifted Halpha reveals the presence of high dispersion rotating disks. The internal dynamical state of these galaxies resembles that of disk systems seen at much higher redshifts (1 < z < 3). Using CO(1-0) observations made with the Plateau de Bure Interferometer, we find gas fractions of 20-30% and depletion times of tdep ~ 0.5 Gyr (assuming a Milky Way-like CO conversion factor). These properties are unlike those expected for low- redshift galaxies of comparable specific star formation rate, but they are normal for their high-z counterparts. DYNAMO galaxies break the degeneracy between gas fraction and redshift, and we show that the depletion time per specific star formation rate for galaxies is closely tied to gas fraction, independent of redshift. We also show that the gas dynamics of two of our local targets corresponds to those expected from unstable disks, again resembling the dynamics of high-z disks. These results provide evidence that DYNAMO galaxies are local analogues to the clumpy, turbulent disks, which are often found at high redshift.Comment: Accepted to ApJ Letter

    Spatially resolved stellar, dust and gas properties of the post-interacting Whirlpool Galaxy system

    Get PDF
    Using infrared imaging from the Herschel Space Observatory, observed as part of the VNGS, we investigate the spatially resolved dust properties of the interacting Whirlpool galaxy system (NGC 5194 and NGC 5195), on physical scales of 1 kpc. Spectral energy distribution modelling of the new infrared images in combination with archival optical, near- through mid-infrared images confirms that both galaxies underwent a burst of star formation ~370-480 Myr ago and provides spatially resolved maps of the stellar and dust mass surface densities. The resulting average dust-to-stellar mass ratios are comparable to other spiral and spheroidal galaxies studied with Herschel, with NGC 5194 at log M(dust)/M(star)= -2.5+/-0.2 and NGC 5195 at log M(dust)/M(star)= -3.5+/-0.3. The dust-to-stellar mass ratio is constant across NGC 5194 suggesting the stellar and dust components are coupled. In contrast, the mass ratio increases with radius in NGC 5195 with decreasing stellar mass density. Archival mass surface density maps of the neutral and molecular hydrogen gas are also folded into our analysis. The gas-to-dust mass ratio, 94+/-17, is relatively constant across NGC 5194. Somewhat surprisingly, we find the dust in NGC 5195 is heated by a strong interstellar radiation field, over 20 times that of the ISRF in the Milky Way, resulting in relatively high characteristic dust temperatures (~30 K). This post-starburst galaxy contains a substantial amount of low-density molecular gas and displays a gas-to-dust ratio (73+/-35) similar to spiral galaxies. It is unclear why the dust in NGC 5195 is heated to such high temperatures as there is no star formation in the galaxy and its active galactic nucleus is 5-10 times less luminous than the one in NGC 5194, which exhibits only a modest enhancement in the amplitude of its ISRF.Comment: 26 pages, 24 figures, Accepted for publication in Ap

    Exposing the Gas Braking Mechanism of the beta Pictoris Disk

    Full text link
    Ever since the discovery of the edge-on circumstellar disk around beta Pictoris, a standing question has been why the gas observed against the star in absorption is not rapidly expelled by the strong radiation pressure from the star. A solution to the puzzle has been suggested to be that the neutral elements that experience the radiation force also are rapidly ionized, and so are only able to accelerate to an average limiting velocity v_ion. Once ionized, the elements are rapidly braked by C II, which is observed to be at least 20x overabundant in the disk with respect to other species. A prediction from this scenario is that different neutral elements should reach different v_ion, depending on the ionization thresholds and strengths of driving line transitions. In particular, neutral Fe and Na are predicted to reach the radial velocities 0.5 and 3.3 km/s, respectively, before being ionized. In this paper we study the absorption profiles of Fe and Na from the circumstellar gas disk around beta Pic, as obtained by HARPS at the ESO 3.6m telescope. We find that the Fe and Na velocity profiles are indeed shifted with respect to each other, confirming the model. The absence of an extended blue wing in the profile of Na, however, indicates that there must be some additional braking on the neutrals. We explore the possibility that the ion gas (dominated by C II) can brake the neutrals, and conclude that about 2-5x more C than previously estimated is needed for the predicted line profile to be consistent with the observed one.Comment: Accepted by ApJ. 4 figs, 8 page

    On the unusual gas composition in the Beta Pictoris debris disk

    Full text link
    The metallic gas associated with the Beta Pic debris disk is not believed to be primordial, but arises from the destruction of dust grains. Recent observations have shown that carbon and oxygen in this gas are exceptionally overabundant compared to other elements, by some 400 times. We study the origin of this enrichment under two opposing hypothesis, preferential production, where the gas is produced with the observed unusual abundance (as may happen if gas is produced by photo-desorption from C/O-rich icy grains), and preferential depletion, where the gas evolves to the observed state from an original solar abundance (if outgassing occurs under high-speed collisions) under a number of dynamical processes. We include ... ... We find ... ...Comment: accepted to ApJ, revised text is highlighted in red color, the old figure 2 is removed, other figures are revise

    A Test of Pre-Main-Sequence Lithium Depletion Models

    Get PDF
    Despite the extensive study of lithium depletion during pre-main-sequence contraction, studies of individual stars show discrepancies between ages determined from the HR diagram and ages determined from lithium depletion (Song et al. 2002, White & Hillenbrand 2005) indicating open questions in the pre-main-sequence evolutionary models. To further test these models, we present high resolution spectra for members of the Beta Pictoris Moving Group (BPMG), which is young and nearby. We measure equivalent widths of the 6707.8 Angstrom Li I line in these stars and use them to determine lithium abundances. We combine the lithium abundance with the predictions of pre-main-sequence evolutionary models in order to calculate a lithium depletion age for each star. We compare this age to the age predicted by the HR diagram of the same model. We find that the evolutionary models under-predict the amount of lithium depletion for the BPMG given its nominal HR diagram age of ~12 Myr (Zuckerman et al. 2001), particularly for the mid-M stars, which have no observable Li I line. This results in systematically older ages calculated from lithium depletion isochrones than from the HR diagram. We suggest that this discrepancy may be related to the discrepancy between measured M-dwarf radii and the smaller radii predicted by evolutionary models.Comment: Accepted by ApJ; 21 pages, 5 figure

    Magneto-Convection and Lithium Age Estimates of the \beta Pictoris Moving Group

    Full text link
    Although the means of the ages of stars in young groups determined from Li depletion often agree with mean ages determined from Hertzsprung - Russell diagram isochrones, there are often statistically significant differences in the ages of individual stars determined by the two methods. We find that inclusion of the effects of inhibition of convection due to the presence of magnetic fields leads to consistent ages for the individual stars. We illustrate how age consistency arises by applying our results to the \beta Pictoris moving group. We find that, although magnetic inhibition of convection leads to increased ages from the Hertzsprung - Russell diagram isochrones for all stars, Li ages are decreased for fully convective M stars and increased for stars with radiative cores. Our consistent age determination for the \beta Pictoris moving group of 40 Myr is larger than previous determinations by a factor of about two.Comment: Submitted to the Astrophysical Journal; 16 pages including 8 figure
    • …
    corecore