233 research outputs found
The VIMOS-VLT Deep Survey: Dependence of galaxy clustering on stellar mass
We have investigated the dependence of galaxy clustering on their stellar
mass at z~1, using the data from the VIMOS-VLT Deep Survey (VVDS). We have
measured the projected two-point correlation function of galaxies, wp(rp) for a
set of stellar mass selected samples at an effective redshift =0.85. We have
control and quantify all effects on galaxy clustering due to the incompleteness
of our low mass samples. We find that more massive galaxies are more clustered.
When compared to similar results at z~0.1 in the SDSS, we observed no evolution
of the projected correlation function for massive galaxies. These objects
present a stronger linear bias at z~1 with respect to low mass galaxies. As
expected, massive objects at high redshift are found in the highest pics of the
dark matter density field.Comment: 4 pages, 2 figures, 43rd Rencontres de Moriond - March 15-22, 2008 -
La Thuile (Val d'Aosta, Italy
The VIMOS-VLT Deep Survey: Dependence of Galaxy Clustering on Luminosity
We have investigated the dependence of galaxy clustering on their intrinsic luminosities at z ~ 1, using the data from the First Epoch VIMOS-VLT Deep Survey (VVDS). We have measured the projected two-point correlation function of galaxies, w_p(r_p), for a set of volume-limited samples at an effective redshift =0.9 and median absolute magnitude -19.6< M_B < -21.3. We find that the clustering strength is rising around M_B^*, apparently with a sharper turn than observed at low redshifts. The slope of the correlation function is observed to steepen significantly from \gamma=1.6^{+0.1}_{-0.1} to \gamma=2.4^{+0.4}_{-0.2}. This is due to a significant change in the shape of w_p(r_p), increasingly deviating from a power-law for the most luminous samples, with a strong upturn at small (< 1-2 h^{-1} Mpc) scales. This trend, not observed locally, also results in a strong scale dependence of the relative bias, b/b* and possibly imply a significant change in the way luminous galaxies trace dark-matter halos at z ~ 1 with respect to z ~ 0
Structure detection in the D1 CFHTLS deep field using accurate photometric redshifts: a benchmark
We investigate structures in the D1 CFHTLS deep field in order to test the
method that will be applied to generate homogeneous samples of clusters and
groups of galaxies in order to constrain cosmology and detailed physics of
groups and clusters. Adaptive kernel technique is applied on galaxy catalogues.
This technique needs none of the usual a-priori assumptions (luminosity
function, density profile, colour of galaxies) made with other methods. Its
main drawback (decrease of efficiency with increasing background) is overcame
by the use of narrow slices in photometric redshift space. There are two main
concerns in structure detection. One is false detection and the second, the
evaluation of the selection function in particular if one wants "complete"
samples. We deal here with the first concern using random distributions. For
the second, comparison with detailed simulations is foreseen but we use here a
pragmatic approach with comparing our results to GalICS simulations to check
that our detection number is not totally at odds compared to cosmological
simulations. We use XMM-LSS survey and secured VVDS redshifts up to z~1 to
check individual detections. We show that our detection method is basically
capable to recover (in the regions in common) 100% of the C1 XMM-LSS X-ray
detections in the correct redshift range plus several other candidates.
Moreover when spectroscopic data are available, we confirm our detections, even
those without X-ray data.Comment: 14 pages, 22 additionnal jpeg figures, accepted in A&
Studying the evolution of large-scale structure with the VIMOS-VLT Deep Survey
The VIMOS-VLT Deep Survey (VVDS) currently offers a unique combination of
depth, angular size and number of measured galaxies among surveys of the
distant Universe: ~ 11,000 spectra over 0.5 deg2 to I_{AB}=24 (VVDS-Deep),
35,000 spectra over ~ 7 deg2 to I_{AB}=22.5 (VVDS-Wide). The current ``First
Epoch'' data from VVDS-Deep already allow investigations of galaxy clustering
and its dependence on galaxy properties to be extended to redshifts ~1.2-1.5,
in addition to measuring accurately evolution in the properties of galaxies up
to z~4. This paper concentrates on the main results obtained so far on galaxy
clustering. Overall, L* galaxies at z~ 1.5 show a correlation length r_0=3.6\pm
0.7. As a consequence, the linear galaxy bias at fixed luminosity rises over
the same range from the value b~1 measured locally, to b=1.5 +/- 0.1. The
interplay of galaxy and structure evolution in producing this observation is
discussed in some detail. Galaxy clustering is found to depend on galaxy
luminosity also at z~ 1, but luminous galaxies at this redshift show a
significantly steeper small-scale correlation function than their z=0
counterparts. Finally, red galaxies remain more clustered than blue galaxies
out to similar redshifts, with a nearly constant relative bias among the two
classes, b_{rel}~1.4, despite the rather dramatic evolution of the
color-density relation over the same redshift range.Comment: 14 pages. Extended, combined version of two invited review papers
presented at: 1) XXVIth Astrophysics Moriond Meeting: "From Dark Halos to
Light", March 2006, proc. edited by L.Tresse, S. Maurogordato and J. Tran
Thanh Van (Editions Frontieres); 2) Vulcano Workshop 2006 "Frontier Objects
in Astrophysics and Particle Physics", May 2006, proc. edited by F.
Giovannelli & G. Mannocchi, Italian Physical Society (Editrice Compositori,
Bologna
Comparison of the VIMOS-VLT Deep Survey with the Munich semi-analytical model - I. Magnitude counts, redshift distribution, colour bimodality, and galaxy clustering
This paper presents a detailed comparison between high-redshift observations
from the VIMOS-VLT Deep Survey (VVDS) and predictions from the Munich
semi-analytical model of galaxy formation. In particular, we focus this
analysis on the magnitude, redshift, and colour distributions of galaxies, as
well as their clustering properties. We constructed 100 quasi-independent mock
catalogues, using the output of the semi-analytical model presented in De Lucia
& Blaizot (2007).We then applied the same observational selection function of
the VVDS-Deep survey, so as to carry out a fair comparison between models and
observations. We find that the semi-analytical model reproduces well the
magnitude counts in the optical bands. It tends, however, to overpredict the
abundance of faint red galaxies, in particular in the i' and z' bands. Model
galaxies exhibit a colour bimodality that is only in qualitative agreement with
the data. In particular, we find that the model tends to overpredict the number
of red galaxies at low redshift and of blue galaxies at all redshifts probed by
VVDS-Deep observations, although a large fraction of the bluest observed
galaxies is absent from the model. In addition, the model overpredicts by about
14 per cent the number of galaxies observed at 0.2<z<1 with I_AB<24. When
comparing the galaxy clustering properties, we find that model galaxies are
more strongly clustered than observed ones at all redshift from z=0.2 to z=2,
with the difference being less significant above z~1. When splitting the
samples into red and blue galaxies, we find that the observed clustering of
blue galaxies is well reproduced by the model, while red model galaxies are
much more clustered than observed ones, being principally responsible for the
strong global clustering found in the model. [abridged]Comment: 15 pages, 14 figures, accepted for publication in A&
The Vimos VLT Deep Survey: Global properties of 20000 galaxies in the I_AB<=22.5 WIDE survey
The VVDS-Wide survey has been designed with the general aim of tracing the
large-scale distribution of galaxies at z~1 on comoving scales reaching
~100Mpc/h, while providing a good control of cosmic variance over areas as
large as a few square degrees. This is achieved by measuring redshifts with
VIMOS at the ESO VLT to a limiting magnitude I_AB=22.5, targeting four
independent fields with size up to 4 sq.deg. each. The whole survey covers 8.6
sq.deg., here we present the general properties of the current redshift sample.
This includes 32734 spectra in the four regions (19977 galaxies, 304 type I
AGNs, and 9913 stars), covering a total area of 6.1 sq.deg, with a sampling
rate of 22 to 24%. The redshift success rate is above 90% independently of
magnitude. It is the currently largest area coverage among redshift surveys
reaching z~1. We give the mean N(z) distribution averaged over 6.1 sq.deg.
Comparing galaxy densities from the four fields shows that in a redshift bin
Deltaz=0.1 at z~1 one still has factor-of-two variations over areas as large as
~0.25 sq.deg. This level of cosmic variance agrees with that obtained by
integrating the galaxy two-point correlation function estimated from the F22
field alone, and is also in fairly good statistical agreement with that
predicted by the Millennium mocks. The variance estimated over the survey
fields shows explicitly how clustering results from deep surveys of even ~1
sq.deg. size should be interpreted with caution. This paper accompanies the
public release of the first 18143 redshifts of the VVDS-Wide survey from the 4
sq.deg. contiguous area of the F22 field at RA=22h, publicly available at
http://cencosw.oamp.frComment: Accepted for publication on Astronomy & Astrophysic
The VLA-VIRMOS Deep Field I. Radio observations probing the microJy source population
We have conducted a deep survey (r.m.s noise 17 microJy) with the Very Large
Array (VLA) at 1.4 GHz, with a resolution of 6 arcsec, of a 1 square degree
region included in the VIRMOS VLT Deep Survey. In the same field we already
have multiband photometry down to I(AB)=25, and spectroscopic observations will
be obtained during the VIRMOS VLT survey. The homogeneous sensitivity over the
whole field has allowed to derive a complete sample of 1054 radio sources (5
sigma limit). We give a detailed description of the data reduction and of the
analysis of the radio observations, with particular care to the effects of
clean bias and bandwidth smearing, and of the methods used to obtain the
catalogue of radio sources. To estimate the effect of the resolution bias on
our observations we have modelled the effective angular-size distribution of
the sources in our sample and we have used this distribution to simulate a
sample of radio sources. Finally we present the radio count distribution down
to 0.08 mJy derived from the catalogue. Our counts are in good agreement with
the best fit derived from earlier surveys, and are about 50 % higher than the
counts in the HDF. The radio count distribution clearly shows, with extremely
good statistics, the change in the slope for the sub-mJy radio sources.Comment: 13 pages, Accepted for publication in Astronomy & Astrophysic
The VIMOS Integral Field Unit: data reduction methods and quality assessment
With new generation spectrographs integral field spectroscopy is becoming a
widely used observational technique. The Integral Field Unit of the VIsible
Multi-Object Spectrograph on the ESO-VLT allows to sample a field as large as
54" x 54" covered by 6400 fibers coupled with micro-lenses. We are presenting
here the methods of the data processing software developed to extract the
astrophysical signal of faint sources from the VIMOS IFU observations. We focus
on the treatment of the fiber-to-fiber relative transmission and the sky
subtraction, and the dedicated tasks we have built to address the peculiarities
and unprecedented complexity of the dataset. We review the automated process we
have developed under the VIPGI data organization and reduction environment
(Scodeggio et al. 2005), along with the quality control performed to validate
the process. The VIPGI-IFU data processing environment is available to the
scientific community to process VIMOS-IFU data since November 2003.Comment: 19 pages, 10 figures and 1 table. Accepted for publication in PAS
- âŠ