42 research outputs found

    The Development of a Depression Preventive Intervention for Adolescents with Attention-Deficit/Hyperactivity Disorder

    Get PDF
    Despite the considerable progress made identifying attention-deficit/hyperactivity disorder (ADHD) as a risk for depressive outcomes in adolescence and adulthood as well as potential explanations for the co-occurrence of ADHD and unipolar depression (i.e., emotion regulation, family support, and reward responsivity), targeted depression prevention efforts have not yet been implemented for adolescents with ADHD. Thus, the specific aims were as follows: (1) develop a behaviorally oriented, tailored, depression preventive intervention for adolescents with ADHD targeting variables empirically supported to account for the covariation between ADHD and depression (Behaviorally Enhancing Adolescents’ Mood; BEAM), (2) pilot BEAM in a small sample of adolescents with ADHD and their parents, (3) evaluate the feasibility and acceptability of BEAM, and (4) examine preliminary results regarding changes in depressive symptoms, emotion regulation, reward responsivity, and family support after BEAM. The sample consisted of 8 parent-adolescent dyads with adolescents ranging in age from 12 to 16 years old. Research questions were tested using both quantitative and qualitative methods. Outcome trends were evaluated using paired samples t-tests and reliable change indices. Semi-structured interviews were coded and analyzed qualitatively using NVivo10. Group-level analyses indicated that there were significant differences in depressive symptoms, emotion regulation, and reward responsivity after BEAM. Findings on family support after BEAM were equivocal. According to reliable change indices used to analyze individual results, majority of participants saw improvements in depressive symptoms and emotion regulation. In addition to improvements in outcome variables, both parents and adolescents were highly satisfied with the BEAM program and used BEAM skills following the completion of the program. Though staff supervision notes suggested that several barriers for delivery of the program arose, the BEAM program was easy to implement and was done so with high integrity. The study’s main findings and their clinical implications are further discussed, including suggested revisions to the BEAM program. Future directions for research are presented with a focus on moving towards a large, randomized control trial

    A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    Get PDF
    Rising atmospheric [CO2 ], ca , is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2 ], ci , a constant drawdown in CO2 (ca - ci ), and a constant ci /ca . These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca . The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca . To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ(13) C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca -induced changes in ci /ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca - ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization towards any single strategy, particularly maintaining a constant ci . Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca , when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca , when photosystems are saturated and water loss is large for each unit C gain. This article is protected by copyright. All rights reserved.Rising atmospheric [CO2], c(a), is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2], c(i), a constant drawdown in CO2 (c(a)-c(i)), and a constant c(i)/c(a). These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying c(a). The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to c(a). To assess leaf gas-exchange regulation strategies, we analyzed patterns in c(i) inferred from studies reporting C stable isotope ratios (C-13) or photosynthetic discrimination () in woody angiosperms and gymnosperms that grew across a range of c(a) spanning at least 100ppm. Our results suggest that much of the c(a)-induced changes in c(i)/c(a) occurred across c(a) spanning 200 to 400ppm. These patterns imply that c(a)-c(i) will eventually approach a constant level at high c(a) because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant c(i). Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low c(a), when additional water loss is small for each unit of C gain, and increasingly water-conservative at high c(a), when photosystems are saturated and water loss is large for each unit C gain

    The Influence of Spatial Registration on Detection of Cerebral Asymmetries Using Voxel-Based Statistics of Fractional Anisotropy Images and TBSS

    Get PDF
    The sensitivity of diffusion tensor imaging (DTI) for detecting microstructural white matter alterations has motivated the application of voxel-based statistics (VBS) to fractional anisotropy (FA) images (FA-VBS). However, detected group differences may depend on the spatial registration method used. The objective of this study was to investigate the influence of spatial registration on detecting cerebral asymmetries in FA-VBS analyses with reference to data obtained using Tract-Based Spatial Statistics (TBSS). In the first part of this study we performed FA-VBS analyses using three single-contrast and one multi-contrast registration: (i) whole-brain registration based on T2 contrast, (ii) whole-brain registration based on FA contrast, (iii) individual-hemisphere registration based on FA contrast, and (iv) a combination of (i) and (iii). We then compared the FA-VBS results with those obtained from TBSS. We found that the FA-VBS results depended strongly on the employed registration approach, with the best correspondence between FA-VBS and TBSS results when approach (iv), the “multi-contrast individual-hemisphere” method was employed. In the second part of the study, we investigated the spatial distribution of residual misregistration for each registration approach and the effect on FA-VBS results. For the FA-VBS analyses using the three single-contrast registration methods, we identified FA asymmetries that were (a) located in regions prone to misregistrations, (b) not detected by TBSS, and (c) specific to the applied registration approach. These asymmetries were considered candidates for apparent FA asymmetries due to systematic misregistrations associated with the FA-VBS approach. Finally, we demonstrated that the “multi-contrast individual-hemisphere” approach showed the least residual spatial misregistrations and thus might be most appropriate for cerebral FA-VBS analyses

    Altered oscillatory brain dynamics after repeated traumatic stress

    Get PDF
    Kolassa I-T, Wienbruch C, Neuner F, et al. Altered oscillatory brain dynamics after repeated traumatic stress. BMC Psychiatry. 2007;7(1): 56.BACKGROUND: Repeated traumatic experiences, e.g. torture and war, lead to functional and structural cerebral changes, which should be detectable in cortical dynamics. Abnormal slow waves produced within circumscribed brain regions during a resting state have been associated with lesioned neural circuitry in neurological disorders and more recently also in mental illness. METHODS: Using magnetoencephalographic (MEG-based) source imaging, we mapped abnormal distributions of generators of slow waves in 97 survivors of torture and war with posttraumatic stress disorder (PTSD) in comparison to 97 controls. RESULTS: PTSD patients showed elevated production of focally generated slow waves (1-4 Hz), particularly in left temporal brain regions, with peak activities in the region of the insula. Furthermore, differential slow wave activity in right frontal areas was found in PTSD patients compared to controls. CONCLUSION: The insula, as a site of multimodal convergence, could play a key role in understanding the pathophysiology of PTSD, possibly accounting for what has been called posttraumatic alexithymia, i.e., reduced ability to identify, express and regulate emotional responses to reminders of traumatic events. Differences in activity in right frontal areas may indicate a dysfunctional PFC, which may lead to diminished extinction of conditioned fear and reduced inhibition of the amygdala

    Source water, phenology and growth of two tropical dry forest tree species growing on shallow karst soils

    Full text link
    Seasonally dry tropical forests are dominated by deciduous and evergreen tree species with a wide range of leaf phenology. We hypothesized that Piscidia piscipula is able to extend leaf senescence until later in the dry season due to deeper and more reliable water sources than Gymnopodium floribundum, which loses leaves earlier in the dry season. Physiological performance was assessed as timing of leaf production and loss, growth, leaf water potential, depth of water uptake determined by stable isotopes, and leaf stable isotopic composition of carbon (δ¹³C) and oxygen (δ¹⁸O). P. piscipula took water primarily from shallow sources, whereas G. floribundum took water from shallow and deep sources. The greatest variation in water sources occurred during the onset of the dry season, when G. floribundum was shedding old leaves and growing new leaves, but P. piscipula maintained its leaves from the previous wet season. P. piscipula showed greater relative growth rate, greater leaf expansion rates, and more negative predawn and midday water potentials than G. floribundum. P. piscipula also exhibited greater leaf organic δ¹³C and lower δ¹⁸O values, indicating that the decrease in photosynthetic carbon isotope discrimination was associated with greater stomatal conductance and greater photosynthesis. Our results indicate that the contrasting early and late dry season leaf loss phenology of these two species is not simply determined by rooting depth, but rather a more complicated suite of characteristics based on opportunistic use of dynamic water sources, maximizing carbon gain, and maintenance of water potential during the dry season

    Bright light therapy versus physical exercise to prevent co-morbid depression and obesity in adolescents and young adults with attention-deficit/hyperactivity disorder: study protocol for a randomized controlled trial

    Get PDF
    Background: The risk for major depression and obesity is increased in adolescents and adults with attention-deficit / hyperactivity disorder (ADHD) and adolescent ADHD predicts adult depression and obesity. Non-pharmacological interventions to treat and prevent these co-morbidities are urgently needed. Bright light therapy (BLT) improves day– night rhythm and is an emerging therapy for major depression. Exercise intervention (EI) reduces obesity and improves depressive symptoms. To date, no randomized controlled trial (RCT) has been performed to establish feasibility and efficacy of these interventions targeting the prevention of co-morbid depression and obesity in ADHD. We hypothesize that the two manualized interventions in combination with mobile health-based monitoring and reinforcement will result in less depressive symptoms and obesity compared to treatment as usual in adolescents and young adults with ADHD. Methods: This trial is a prospective, pilot phase-IIa, parallel-group RCT with three arms (two add-on treatment groups [BLT, EI] and one treatment as usual [TAU] control group). The primary outcome variable is change in the Inventory of Depressive Symptomatology total score (observer-blinded assessment) between baseline and ten weeks of intervention. This variable is analyzed with a mixed model for repeated measures approach investigating the treatment effect with respect to all three groups. A total of 330 participants with ADHD, aged 14 – < 30 years, will be screened at the four study centers. To establish effect sizes, the sample size was planned at the liberal significance level of α = 0.10 (two-sided) and the power of 1-β = 80% in order to find medium effects. Secondary outcomes measures including change in obesity, ADHD symptoms, general psychopathology, health-related quality of life, neurocognitive function, chronotype, and physical fitness are explored after the end of the intervention and at the 12-week follow-up. This is the first pilot RCT on the use of BLT and EI in combination with mobile health-based monitoring and reinforcement targeting the prevention of co-morbid depression and obesity in adolescents and young adults with ADHD. If at least medium effects can be established with regard to the prevention of depressive symptoms and obesity, a larger scale confirmatory phase-III trial may be warranted.The trial is funded by the EU Framework Programme for Research and Innovation, Horizon 2020 (Project no. 667302). Funding period: January 2016–December 2020. This funding source had no role in the design of this study and will not have any role during its execution, analyses, interpretation of the data, or decision to submit results. Some local funds additionally contributed to carry out this study, especially for the preparation of the interventions: FBO research activity is by the Spanish Ministry of Economy and Competitiveness – MINECO (RYC-2011-09011) and by the University of Granada, Plan Propio de Investigación 2016, Excellence actions: Unit of Excellence on Exercise and Health (UCEES)

    A checklist for assessing the methodological quality of concurrent tES-fMRI studies (ContES checklist): a consensus study and statement

    Get PDF
    Background: Low intensity transcranial electrical stimulation (tES), including alternating or direct current stimulation (tACS or tDCS), applies weak electrical stimulation to modulate the activity of brain circuits. Integration of tES with concurrent functional magnetic resonance imaging (fMRI) allows for the mapping of neural activity during neuromodulation, supporting causal studies of both brain function and tES effects. Methodological aspects of tES-fMRI studies underpin the results, and reporting them in appropriate detail is required for reproducibility and interpretability. Despite the growing number of published reports, there are no consensus-based checklists for disclosing methodological details of concurrent tES-fMRI studies. Objective: To develop a consensus-based checklist of reporting standards for concurrent tES-fMRI studies to support methodological rigor, transparency, and reproducibility (ContES Checklist). Methods: A two-phase Delphi consensus process was conducted by a steering committee (SC) of 13 members and 49 expert panelists (EP) through the International Network of the tES-fMRI (INTF) Consortium. The process began with a circulation of a preliminary checklist of essential items and additional recommendations, developed by the SC based on a systematic review of 57 concurrent tES-fMRI studies. Contributors were then invited to suggest revisions or additions to the initial checklist. After the revision phase, contributors rated the importance of the 17 essential items and 42 additional recommendations in the final checklist. The state of methodological transparency within the 57 reviewed concurrent tES-fMRI studies was then assessed using the checklist. Results: Experts refined the checklist through the revision and rating phases, leading to a checklist with three categories of essential items and additional recommendations: (1) technological factors, (2) safety and noise tests, and (3) methodological factors. The level of reporting of checklist items varied among the 57 concurrent tES-fMRI papers, ranging from 24% to 76%. On average, 53% of checklist items were reported in a given article. Conclusions: Use of the ContES checklist is expected to enhance the methodological reporting quality of future concurrent tES-fMRI studies, and increase methodological transparency and reproducibility
    corecore