2,806 research outputs found

    Using the Java Media Framework to build Adaptive Groupware Applications

    Get PDF
    Realtime audio and video conferencing has not yet been satisfactorily integrated into web-based groupware environments. Conferencing tools are at best only loosely linked to other parts of a shared working environment, and this is in part due to their implications for resource allocation and management. The Java Media Framework offers a promising means of redressing this situation. This paper describes an architecture for integrating the management of video and audio conferences into the resource allocation mechanism of an existing web-based groupware framework. The issue of adaptation is discussed and a means of initialising multimedia session parameters based on predicted QoS is described

    Transport Protocol Throughput Fairness

    Get PDF
    Interest continues to grow in alternative transport protocols to the Transmission Control Protocol (TCP). These alternatives include protocols designed to give greater efficiency in high-speed, high-delay environments (so-called high-speed TCP variants), and protocols that provide congestion control without reliability. For the former category, along with the deployed base of ‘vanilla’ TCP – TCP NewReno – the TCP variants BIC and CUBIC are widely used within Linux: for the latter category, the Datagram Congestion Control Protocol (DCCP) is currently on the IETF Standards Track. It is clear that future traffic patterns will consist of a mix of flows from these protocols (and others). So, it is important for users and network operators to be aware of the impact that these protocols may have on users. We show the measurement of fairness in throughput performance of DCCP Congestion Control ID 2 (CCID2) relative to TCP NewReno, and variants Binary Increase Congestion control (BIC), CUBIC and Compound, all in “out-of-the box” configurations. We use a testbed and endto- end measurements to assess overall throughput, and also to assess fairness – how well these protocols might respond to each other when operating over the same end-to-end network path. We find that, in our testbed, DCCP CCID2 shows good fairness with NewReno, while BIC, CUBIC and Compound show unfairness above round-trip times of 25ms

    The effect of hot and cold drinks on thermoregulation, perception and performance: the role of the gut in thermoreception

    Get PDF
    Purpose. Hot compared to cold drinks alter sweating responses during very low intensity exercise in temperate conditions. The thermoregulatory, perceptual and performance effects of hot compared to cold drinks in hot, dry conditions during high-intensity exercise have not been examined. Method. Ten participants (mean ± SD characteristics age 25 ± 5 years, height 1.81 ± 0.07 m, body mass 73.5 ± 10.6 kg, maximal power output (PMax) 350 ± 41 W). completed two conditions where they drank four boluses (ingested at -9, 15, 30 & 45 minutes respectively) of 3.2 mL.kg-1 (~960 mL total) of either a COLD (5.3°C) or a HOT drink (49.0°C), which were contrasted to a no drink CONTROL. They cycled for 60-minutes (55% PMax in hot (34.4°C) dry (34% RH) ambient conditions followed by a test to exhaustion (TTE; 80% PMax). The thermoregulatory, performance and perceptual implications of drink temperature were measured. Results. TTE was worse in the CONTROL (170 ± 132 s) than the COLD drink (371 ± 272 s; p = .021) and HOT drink conditions (367 ± 301 s; p = .038) which were not different (p = .965). Sweat responses (i.e. reflex changes in mean skin temperature (Tmsk) and galvanic skin conductance) indicated transient reductions in sweating response after COLD drink ingestion. The COLD drink improved thermal comfort beyond the transient changes in sweating. Conclusion. Only COLD drink ingestion changed thermoregulation but improved perceptual response. Accordingly, we conclude a role for gut thermoreception in thermal perception during exercise in hot, dry conditions

    Aeolianite and barrier dune construction spanning the last two glacial-interglacial cycles from the southern Cape coast, South Africa

    Get PDF
    The southern Cape region of South Africa has extensive coastal aeolianites and barrier dunes. Whilst previously reported, limited knowledge of their age has precluded an understanding of their relationship with the climatic and sea-level fluctuations that have taken place during the Late Quaternary. Sedimentological and geomorphological studies combined with an optical dating programme reveal aeolianite development and barrier dune construction spanning at least the last two glacial–interglacial cycles. Aeolianite deposition has occurred on the southern Cape coast at ca 67–80, 88–90, 104–128, 160–189 and >200 ka before the present. Using this and other published data coupled with a better understanding of Late Quaternary sea-level fluctuations and palaeocoastline configurations, it is concluded that these depositional phases appear to be controlled by interglacial and subsequent interstadial sea-level high stands. These marine transgressions and regressions allowed onshore carbonate-rich sediment movement and subsequent aeolian reworking to occur at similar points in the landscape on a number of occasions. The lack of carbonates in more recent dunes (Oxygen Isotope Stages 1/2 and 4/5) is attributed not to leaching but to changes to carbonate production in the sediment source area caused by increased terrigenous material and/or changes in the balance between the warm Agulhas and nutrient-rich Benguela ocean current

    Classical vgrcv_{gr} \neq c solutions of Maxwell equations and the tunneling photon effect

    Full text link
    We propose a very simple but general method to construct solutions of Maxwell equations propagating with a group velocity vgrcv_{gr} \neq c. Applications to wave guides and a possible description of the known experimental evidences on photonic tunneling are discussed.Comment: 11 pages, Latex2e; to be published in Phys. Lett.

    Three-dimensional simulations of the interstellar medium in dwarf galaxies - II. Galactic wind

    Full text link
    We study the hydrodynamical evolution of galactic winds in disky dwarf galaxies moving through an intergalactic medium. In agreement with previous investigations,we find that when the ram pressure stripping does not disrupt the ISM, it usually has a negligible effect on the galactic wind dynamics. Only when the IGM ram pressure is comparable to the central ISM thermal pressure the stripping and the superwind influence each other increasing the gas removal rate. In this case several parameters regulate the ISM ejection process, as the original distribution of the ISM and the geometry of the IGM-galaxy interaction. When the ISM is not removed by the ram pressure or the wind, it loses memory of the starburst episode and recovers almost its pre-burst distribution in a timescale of 50-200 Myr. After this time another star formation episode becomes, in principle, possible. Evidently, galactic winds are consistent with a recurrent bursts star formation history. Contrary to the ISM content, the amount of the metal-rich ejecta retained by the galaxy is more sensitive to the ram pressure action. Part of the ejecta is first trapped in a low density, extraplanar gas produced by the IGM-ISM interaction, and then pushed back onto the galactic disc. The amount of trapped metals in a moving galaxy may be up to three times larger than in a galaxy at rest. This prediction may be tested comparing metallicity of dwarf galaxies in nearby poor clusters or groups, such as Virgo or Fornax, with the field counterpart. The sensitivity of the metal entrapment efficiency on the geometry of the interaction may explain part of the observed scatter in the metallicity-luminosity relation for dwarf galaxies.Comment: Accepted MNRAS, 9 color figure

    Generational spreading speed and the dynamics of population range expansion

    Get PDF
    Author Posting. © University of Chicago Press, 2015. This article is posted here by permission of University of Chicago Press for personal use, not for redistribution. The definitive version was published in American Naturalist 186 (2015): 362-375, doi:10.1086/682276.Some of the most fundamental quantities in population ecology describe the growth and spread of populations. Population dynamics are often characterized by the annual rate of increase, λ, or the generational rate of increase, R0. Analyses involving R0 have deepened our understanding of disease dynamics and life-history complexities beyond that afforded by analysis of annual growth alone. While range expansion is quantified by the annual spreading speed, a spatial analog of λ, an R0-like expression for the rate of spread is missing. Using integrodifference models, we derive the appropriate generational spreading speed for populations with complex (stage-structured) life histories. The resulting measure, relevant to locations near the expanding edge of a (re)colonizing population, incorporates both local population growth and explicit spatial dispersal rather than solely growth across a population, as is the case for R0. The calculations for generational spreading speed are often simpler than those for annual spreading speed, and analytic or partial analytic solutions can yield insight into the processes that facilitate or slow a population’s spatial spread. We analyze the spatial dynamics of green crabs, sea otters, and teasel as examples to demonstrate the flexibility of our methods and the intuitive insights that they afford.Support for this work was provided, in part, by a postdoctoral fellowship (A.W.B.), Discovery Grants (M.K., M.A.L.), and an Accelerator Grant (M.A.L.) from the Natural Sciences and Engineering Research Council of Canada. The material is based on work supported by the US National Science Foundation under grants DEB-1145017 and DEB-1257545 to M.G.N. M.A.L. also received support from the Canada Research Chair program and a Killam Research Fellowship.2016-08-0

    The Occurrence and Speed of CMEs Related to Two Characteristic Evolution Patterns of Helicity Injection in Their Solar Source Regions

    Full text link
    Long-term (a few days) variation of magnetic helicity injection was calculated for 28 solar active regions which produced 47 CMEs to find its relationships with the CME occurrence and speed using SOHO/MDI line-of-sight magnetograms. As a result, we found that the 47 CMEs can be categorized into two different groups by two characteristic evolution patterns of helicity injection in their source active regions which appeared for about 0.5-4.5 days before their occurrence: (1) a monotonically increasing pattern with one sign of helicity (Group A; 30 CMEs in 23 active regions) and (2) a pattern of significant helicity injection followed by its sign reversal (Group B; 17 CMEs in 5 active regions). We also found that CME speed has a correlation with average helicity injection rate with linear correlation coefficients of 0.85 and 0.63 for Group A and Group B, respectively. In addition, these two CME groups show different characteristics as follows: (1) the average CME speed of Group B (1330km/s) is much faster than that of Group A (870km/s), (2) the CMEs in Group A tend to be single events, whereas those in Group B mainly consist of successive events, and (3) flares related to the CMEs in Group B are relatively more energetic and impulsive than those in Group A. Our findings therefore suggest that the two CME groups have different pre-CME conditions in their source active regions and different CME characteristics.Comment: 25 pages, 7 figures, accepted for publication in Ap

    Sports and the Kingdom

    Get PDF

    Persistent currents in ballistic normal-metal rings

    Get PDF
    Recent experiments renewed interest in persistent currents in mesoscopic normal-metal rings. We show that in ballistic rings in high magnetic fields the Zeeman splitting leads to periodic current quenching with period much larger than the period of the persistent current. Simple arguments show that this effect might be relevant for diffusive rings as well. Another aim of this paper is to discuss fluctuations of the persistent current due to thermal excitation of high energy levels. Being observed such fluctuations would witness a coherent state of an electron system at high temperatures when the persistent current is exponentially suppressed.Comment: Submitted to Special Issue of the international journal Low Temperature Physics : "Quantum coherent effects in superconductors and normal metals" devoted to 75-years anniversary of Prof. Igor Kuli
    corecore