
Transport Protocol Throughput Fairness
S. Bhatti, M. Bateman

School of Computer Science, University of St Andrews, St Andrews, UK

Email: {saleem, mb}@cs.st-andrews.ac.uk

Abstract— Interest continues to grow in alternative trans-
port protocols to the Transmission Control Protocol (TCP).
These alternatives include protocols designed to give greater
efficiency in high-speed, high-delay environments (so-called
high-speed TCP variants), and protocols that provide con-
gestion control without reliability. For the former category,
along with the deployed base of ‘vanilla’ TCP – TCP
NewReno – the TCP variants BIC and CUBIC are widely
used within Linux: for the latter category, the Datagram
Congestion Control Protocol (DCCP) is currently on the
IETF Standards Track. It is clear that future traffic patterns
will consist of a mix of flows from these protocols (and
others). So, it is important for users and network operators
to be aware of the impact that these protocols may have on
users. We show the measurement of fairness in throughput
performance of DCCP Congestion Control ID 2 (CCID2)
relative to TCP NewReno, and variants Binary Increase
Congestion control (BIC), CUBIC and Compound, all in
“out-of-the box” configurations. We use a testbed and end-
to-end measurements to assess overall throughput, and also
to assess fairness – how well these protocols might respond
to each other when operating over the same end-to-end
network path. We find that, in our testbed, DCCP CCID2
shows good fairness with NewReno, while BIC, CUBIC and
Compound show unfairness above round-trip times of 25ms.

Index Terms— fairness, protocol performance, DCCP, TCP,
BIC, CUBIC, Compound TCP

I. INTRODUCTION

While the Transmission Control Protocol (TCP) re-

mains in widespread use, new transport protocols are

being defined with different behaviour to that of TCP.

TCP’s additive increase multiplicative decrease (AIMD)

behaviour [1] is often credited as a major factor in the

stability of today’s Internet. The AIMD behaviour causes

TCP to back-off when it experiences congestion, cutting

its transmission rate to half, and then only increasing its

transmission rate by one segment size every round-trip-

time (RTT). However, this ‘standard’ TCP behaviour has

performance problems when considering certain scenar-

ios:

• TCP’s back-off behaviour for congestion avoidance

and control is considered conservative and results

in poor utilisation in networks with paths that have

This paper is based on two items of previous work: (1) “A Compara-
tive Performance Evaluation of DCCP”, by S. Bhatti, M. Bateman, and
D. Miras, which appeared in the Proceedings of SPECTS2008 - 2008

International Symposium on Performance Evaluation of Computer and

Telecommunication Systems, University of Edinburgh, UK. 16-18 June
2008; (2) “Revisiting inter-flow fairness”, by S. Bhatti, M. Bateman, D.
Rehunathan, T. Henderson, G. Bigwood, D. Miras, which appeared in
the Proceedings of BROADNETS2008 - 5th International Conference on

Broadband Communications, Networks and Systems, London, UK 08-11
September 2008.

large delays and/or high end-to-end capacity, i.e.

paths with a high bandwidth-delay product (BDP).

In such circumstances, available network capacity is

underused.

• TCP’s behaviour is based on the requirement of

reliable delivery (through retransmission). However,

some applications may not need reliability, whilst

still requiring congestion control, e.g. media stream-

ing, sensor networks, online gaming, high-capacity

data streams from applied science applications (e.g.

Grid applications).

For the first of these cases, many high-speed TCP

variants have been implemented with different behaviour,

which allows them to be more effective on high-BDP

paths. Indeed, for Linux, two of these variants, Binary

Increase Congestion control (BIC) [2] and CUBIC [3],

are in common use, and are the default versions of

TCP in place of NewReno in Linux kernels over the

past few years1. In Windows, as well as TCP NewReno,

Compound TCP [4] is being introduced.

For the second of these cases, the Datagram Congestion

Control Protocol (DCCP) [5] has emerged as the likely

protocol to provide congestion controlled transport service

to applications, without the reliability of TCP. DCCP is

on the IETF standards track, and an implementation is

now available within the Linux kernel.

A. Fairness in throughput performance

BIC, CUBIC and Compound TCP are designed to be

more “aggressive” than NewReno, in order to make use

of under-utilised capacity. Our recent results show that

this is indeed the case for BIC and CUBIC in high-BDP

paths at ∼1Gb/s [6], supporting results in similar studies

at sub-gigabit data rates [7], [8].

While NewReno, BIC and CUBIC are in widespread

use in Linux, as DCCP matures and its use increases,

it is important for users to be aware of its behaviour

within an environment where there will be a mix of

protocols in operation. Of course, Windows is the most

widely used desktop platform, so, potentially, the use

of Compound TCP will also become widespread. The

question of fairness then arises: What happens when

DCCP flows share an end-to-end path with NewReno,

BIC, CUBIC or Compound TCP flows?

1NewReno before kernel version 2.6.8, August 2004; BIC from Linux
kernel version 2.6.8, August 2004; CUBIC from Linux kernel version
2.6.19, September 2006.

JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009 881

© 2009 ACADEMY PUBLISHER
doi:10.4304/jnw.4.9.881-894

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CLoK

https://core.ac.uk/display/6112997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To answer this questions, we need to ask ourselves,

“How can we assess ‘fairness’ in the behaviour of such

protocols?” A popular measure of fairness for network

flows is Jain’s Fairness Index (JFI) [9]. While this is a

general metric, by using the end-to-end throughput of the

flows sharing (whole or part of) a network path, system-

wide (i.e., across all flows) fairness can be assessed.

Starting with Jain’s Fairness Index, then introducing a

new metric – Normalised Resource Usage (NRU) – we

propose a simple but practical methodology for examining

the throughput fairness of flows.

B. Contribution and structure of this paper

The contributions of this paper are:

• a new metric with which to assess the dynamics of

inter-protocol fairness with respect to throughput.

• a measurement-based approach which allows the

new metric to be used easily.

• a measurement-based, experimental pair-wise assess-

ment of the fairness of NewReno, BIC, CUBIC

and Compound TCP against DCCP operating with

a TCP-like congestion control (CCID2) [10].

We begin with a discussion on the definition of ‘fair-

ness’ in Section II. Based on this discussion, in Section

III, we then define our metrics and methods for evaluation.

For rigour and clarity, we present our results first for

individual protocol behaviour in Section IV, and then for

the inter-protocol behaviour in Section V. In Section VI,

we present our conclusion, including a discussion of the

potential limitations of our approach.

II. ASSESSING INTER-FLOW FAIRNESS

The Transport Modelling Research Group (TMRG)

of the IRTF2 presents the criteria by which one might

make rigourous and complete assessments, notably com-

parative assessments, of transport protocols [11]. One of

the measures noted by the TMRG as a desirable metric

for assessing the performance of transport flows is for

inter-flow fairness: sharing of resources between different

flows.

Our intention is to demonstrate a methodology for

measuring inter-flow fairness that is easy to implement.

We show how fairness, as evaluated using end-to-end

performance measurements (we chose throughput), can

be utilised for assessing relative performance.

A. What is fair?

The notion of ‘fairness’ in the use of resources has been

much debated within the literature. Having a fair share of

a resource is important where the resource demands of

multiple flows sharing the same resource are not met. In

the absence of any other resource controls in the network,

this means that there is at least one point along the end-

to-end path where congestion is occurring, and we may

determine how the resource is being shared by evaluating

2http://www.icir.org/tmrg/

the resource distribution across the flows on that (part of)

the path. For example, in the case of transport protocol

flows sharing a bottleneck link on an end-to-end path, we

could evaluate the way that the capacity is shared at the

bottleneck (a local view), or the end-to-end throughput

achieved for each flow sharing the bottleneck (a global

view).

B. Definitions of fairness

What is a fair share of a resource? There are several

well-known definitions of fairness, and we take the list

below from the work of the TMRG.

In max-min fairness [12], each flow’s throughput is at

least as large as that of all other flows which have the

same bottleneck. In this scheme each flow’s demand is

met, with the minimum demand (request for allocation)

achieving the maximum allocation of resource. This as-

sumes that the flow’s demand is known, or (in the absence

of this knowledge or no other resource usage model), that

all flows effectively receive an equal share of the resource.

The goal of proportional fairness [13] is to maximise

the utility function U =
∑N

1 log Tn for a given set of N
flows, where Tn is the throughput of flow n. However,

the implicit assumption that the utility can be modelled

as a log function has not been justified.

Of course, weighted versions of max-min and propor-

tional fairness are also possible, to reflect, for exam-

ple, different assignments of capacity. With both max-

min fairness, and proportional fairness, there is also the

assumption that resource allocation can be controlled.

In a best-effort IP network, we are typically unable to

control resources on an end-to-end basis, but we may

be able to measure usage of resources, especially (but

not exclusively) at end-systems. In our aim to create a

simple and practical methodology for assessing fairness,

it would be beneficial to use a metric that is easily

facilitated through some measurement related to a flow’s

performance, e.g. measurement of a flow’s end-to-end

throughput.

Whilst the metrics listed above focus on throughput,

other proposals suggest using different measures to assess

fairness. For example, there are proposals to use end-to-

end delay for file transfers [14]. In [15], a strong case

is made as to why throughput measurements should not

be used for assessing fairness, but instead some notion

of ‘cost’ should be considered. Motivated by [15], in

[16], the case is reasserted for consideration of best-effort

traffic to be considered. In keeping with [16], we choose

to use end-to-end throughput, as it remains applicable to

assessment of flow performance, is widely used, is easily

understood and is straightforward to measure. However,

our metric (Section II-D) is general and could also be

applied using end-to-end delay or cost, if required.

C. Jain’s Fairness Index

As mentioned above, Jain’s Fairness Index (JFI) [9]

is widely used for assessing system-wide fairness, as in

882 JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

Equation (1), where, 0 ≤ J ≤ 1, N is the number

of flows, rn is the value of the resource attribute being

assessed for flow n, e.g. rn is the measured end-to-end

throughput. J = 1 means there is fairness across all flows;

J = 0 indicates no fairness.

J =

(

∑N
n=1 rn

)2

N
∑N

n=1 r2
n

(1)

An obvious approach to examining system-wide fair-

ness over time is simply to evaluate the JFI at given

instances during the period of interest, as in Equation (2),

where t, in practice, is discrete. rn(tj) is then an approx-

imation of throughput as determined at time interval tj ,

and evaluated over the period (tj , tj−1), tj > tj−1, where

tj−1 is the previous time at which an approximation was

determined. For our experiments, t was every second. So,

J is the mean value of J(t) values over a given time

period.

J(t) =

(

∑N
n=1 rn(t)

)2

N
∑N

n=1 rn(t)2
(2)

The definition of JFI means that it may be difficult

to determine the degree of relative unfairness between

the flows. To illustrate, in Figure 1 we have created an

artificial situation with two flows. Flow 2 is held constant

at 100 and the value of Flow 1 is varied from 1 to 10000

(the units are immaterial). The plot shows the value of

JFI (Equation 1) as the ratio Flow 1 / Flow 2 changes:

the ratio has a range of four orders of magnitude, whilst

the JFI has the effective range [0.51, 1.00].

Figure 1. The range of JFI for two flows, Flow 2 = 100 (no units)

Also, we find that this effective range depends on the

value of N . Furthermore, it is clear from Figure 1 that

difference in say, 0.1, between JFI values has different

significance, depending on the actual values of JFI being

considered, i.e., the difference between J = 0.9 and J =
0.8 has a different significance in flow ratios than the

difference between J = 0.6 and J = 0.5 So, it is not

possible to use JFI easily in comparative analyses.

D. Resource usage and relative capability

An implicit assumption in JFI is that all of the processes

being measured are equally capable of consuming the

resource for which they are competing, and this is indeed

the general assumption made in previous work [17], [18],

including our own [6], [19]. However, when examining

network flows, this is not necessarily true: some protocols

may attain better performance than others given the same

network conditions. It is thus necessary to take into

account the flows’ actual capabilities, in terms of the

resources that it is possible for a flow to consume. That

is, when making direct comparisons between resource

consumption, JFI does not take into account the relative

capability of the processes that are being evaluated, and so

biases may result. So, we propose a different metric when

considering fairness, one that is designed to be simple but

allows:

• weights to be applied that reflect relative capability,

given specific resource provisioning.

• comparative assessments to be made, based on rela-

tive capability.

Further, we choose to reflect the following characteris-

tics in the output of our metric, in comparison to JFI:

• to be able to make comparisons of fairness on a per-

flow basis, not just a system-wide basis.

• to enable an assessment of fairness over time (as

well as a summary statistic), allowing observation

of per-flow and system-wide dynamics.

A summary of the important definitions for our metric

is given in Table I for convenience, and are defined in the

remainder of this Section.

TABLE I.

SUMMARY OF IMPORTANT DEFINITIONS

Defn Name Eqn

Un(t) Normalised Resource Usage (NRU) 3
Rn(t) Resource Share Ratio (RSR) 4
Un flow NRU (mean of the set {Un(t)}) 5
UN mean system NRU (mean of the set {Un}) 6

UN+ fair system NRU 7
UN− unfair system NRU 8

E. Normalised Resource Usage (NRU)

In order to provide a richer view of the fairness

information, we use a metric which is based on the ratio

of resource usage of an individual flow with respect to

its expected capability: the Normalised Resource Usage

(NRU) [20]. The NRU metric, Un(t), for a flow n with

throughput rn(t) at time t is defined in terms of the

Resource Share Ratio (RSR), Rn(t):

Un(t) = 10 log10(Rn(t)) (3)

Rn(t) = wn(t)rn(t) (4)

where wn is a weight which reflects the relative capability

of the flow under the conditions being examined. Key to

this metric is the evaluation of wn(t), which we address

in due course (Section II-G). The use of the 10 log10()
deciBel term is for convenience of representing large and

small values. When Un(t) = 0, then flow n is receiving a

fair share of the available resource. When Un(t) < 0, then

flow n is receiving less than its fair share of the resource.

When Un(t) > 0, flow n is receiving more than its fair

share. This makes it easy to make relative comparisons of

JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009 883

© 2009 ACADEMY PUBLISHER

fairness between flows: if any flows have U(t) < 0, then

they are receiving less than their fair share of the resource,

compared to their expected resource usage, regardless of

the performance of other flows.

For a flow n with a set of values Un(t), over a given

time-period, we can generate a summary, the flow NRU,

by taking the mean, Un, of the values in Un(t):

Un = {Un(t)} (5)

F. System-wide summaries

While time-based data sets let us view detailed dynam-

ics, system-wide summaries are also important to allow

comparative analyses to be made. We use our definition

of Un(t) to generate summaries as follows.

Assuming a system has N flows, 1 ≤ n ≤ N , a system-

wide summary can be obtained by taking the mean, UN ,

of Un for all N flows. However, such a mean could hide

unfairness, as positive and negative values of Un would

cancel out. So, we produce also UN+ and UN−:

UN = {Un} (6)

UN+ = {Un+}, {Un+} ⊂ {Un}∀Un ≥ 0 (7)

UN− = {Un−}, {Un−} ⊂ {Un}∀Un < 0 (8)

where UN+ is the mean of the fair (zero) or better

(positive) flow NRU values, and is called the fair system

NRU; UN− is the mean of all the unfair (negative) flow

NRU values, and is called the unfair system NRU.

TABLE II.

INTERPRETATION OF SYSTEM NRU VALUES

UN+ UN− Case Comment

unfairness
- -ve A all flows unfair

+ve -ve B some flows fair or better,
some flows unfair

0 -ve C some flows fair, some
flows unfair

fairness
+ve - D all flows fair or better
0 - E all flows fair

To explain the use of UN+ and UN−, we refer to Table

II. The combination of values (“−” denotes no value)

can be grouped into those combinations that indicate

a fair system and those that indicate unfairness. In the

“Comment” column, ‘fair’ and ‘unfair’ are compared to

the performance of the flows when the individual flows are

run in a fair system. For Case A, there are no flows that

have fair treatment, so the system as a whole is unfair.

For Case B, some flows get more than their fair share

and some less – so something in the system and/or the

behaviour of some of the flows is causing unfairness to

other flows. In Case C, no flows are getting more than

their fair share, but some are getting less, so something in

the system-wide behaviour or the behaviour of the flows

themselves, is causing the unfairness. For the remaining

two cases, all flows are either performing as well as in a

fair system (Case E), or some are performing better than

in the fair system (Case D).3

JFI cannot make this kind of distinction – it only indi-

cates whether the system as a whole is fair. Additionally,

use of the deciBel units allows us to make comparative

performance analyses using familiar engineering seman-

tics, which is not possible with JFI.

G. Weights for NRU

Practical calibration form an important distinguishing

feature in our methodology and use of our new fairness

metric: calibration tests are used to assign weights (Equa-

tion (4)) that reflect each flow’s capability to consume the

available resource. From Equation (4), we define:

wn(t) = 1/Rrn(t) (9)

wn = 1/Rrn (10)

where Rrn(t) is the expected throughput of that flow

under the conditions being examined, and Rrn is Rrn(t),
the mean value of the set of expected throughput values.

Equation (9) is a general expression, and we simplify this

for our needs by using Equation (10), which represents

the weight as a scaling factor, evaluated from the mean

throughput values that we measure in our calibration tests

(see Section IV). In our case, the value of wn for each

flow is taken from the appropriate column of the two

values (Flows 1 and 2) in Table IV, at each RTT value.

The construction of Table IV is explained in Section III-

A.

III. METHODOLOGY AND METRICS

We have taken a practical approach, generating data

flows using a modified version of the tool iperf 4, our

modifications allowing easy use of of different TCP vari-

ants5. We transmitted flows over a simple testbed, sending

two flows over a single bottelneck link. Our intention

was to make observations of the end-to-end behaviour

of the flows over the bottleneck link, and measure their

relative performance. We based our evaluation on the end-

to-end throughput achieved by each flow, as reported at 1s

intervals by iperf. We used the throughput measurements

to evaluate how fair the resource share was for the two

flows, with respect to these throughput measurements.

A. Testbed

Our testbed6 set-up was the well-known dumbbell

arrangement as depicted in Figure 2 and used in previous

similar studies [7], [8], [19], albeit at higher speeds (100s

of Mb/s to nearly ∼1Gb/s). This simple testbed helps to

reduce the factors of error or unknown behaviour that

3Case D is included for the sake of completeness, but in practical
situations, it may not occur.

4http://dast.nlanr.net/Projects/Iperf/
5This modified version of iperf is available from the authors.
6Full details, including hardware specification and Linux kernel

parameter settings are available from the authors.

884 JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

may affect the results and concentrate on the protocol

behaviour. As noted in [21], “Simple topologies, like

a ”dumbbell” topology with one congested link, are

sufficient to study many traffic properties.”

Sender 1

Sender 2

 Receiver 1

Receiver 2

netem

router

FastEthernet

switch

100Mb/s

100Mb/s

100Mb/s

100Mb/s

variable

RTT

Figure 2. Testbed configuration

The testbed consisted of two senders, two receivers and

a router to provide the network delay and bottleneck. All

network connections were 100Mb/s full-duplex Ethernet.

Our measurement runs consisted of generating two flows,

using iperf, for a pair-wise comparison: Flow 1 was from

Sender 1 to Receiver 1, and Flow 2 was from Sender 2 to

Receiver 2. The duration of each measurement run was

300s, with Flow 1 starting at 0s, and Flow 2 starting at

30s to avoid initial synchronisation effects. After some

calibration tests, we conducted five measurement runs for

each of the TCP protocols running against DCCP/CCID2

(CCID2 is explained later) at each of the following RTT

values: 25ms, 50ms, 100ms, 200ms. So, in all these cases,

TCP’s normal 64KB window is lower than the BDP of

the path.

The senders and receivers ran Linux kernel version

2.6.22.6, and we used “out-of-the-box” configuration for

the end systems7, rather than tuning the stack for high-

speed operation (as in [7], [8], [19]), in order to gauge the

performance under (arguably) the most likely configura-

tion of the end-system. TCP Selective Acknowledgements

(SACK, RFC2018) was enabled; the Window Scale Op-

tion, Protection Against Wrapped Sequence Numbers, and

Round-Trip Time Measurement (RFC1323) were enabled;

and MTU size was 1500 bytes (no IP fragmentation): all

these being default settings.

The ‘netem router’ ran Linux kernel version 2.6.18

and the package netem8 was used to control RTT for

the packet flows, with the network delay split equally

between the forward and reverse paths. Buffer sizes on the

router were set to ensure enough buffer space to handle

the window sizes of the end-system TCP stacks, i.e. the

buffering on the router was always set to 100% of the

BDP for the given RTT.

To check the behaviour of our testbed set-up, we used

ping to measure the RTT that was configured at the netem

router: ping reported the delay was accurately configured

(to within ∼1ms). We then generated single TCP flows

and observed that all TCP variants and DCCP/CCID2

reached peaks of ∼95Mb/s at the lower RTTs (within the

normal 64KB window of TCP) – example runs showing

end-to-end throughput at various RTT values are shown in

Figures 3(a), 4(a), 5(a), 6(a) and 7(a). We also generated

7DCCP/CCID2 was configured as recommended in http://www.

linux-foundation.org/en/Net:DCCP.
8http://www.linux-foundation.org/en/Net:Netem

two flows using the same protocol, to gauge how fair the

protocol was to itself – example runs showing end-to-end

throughput for pair-wise tests are given in Figures 3(b),

4(b), 5(b), 6(b) and 7(b).

B. Weights

We noted earlier that to evaluate the NRU we re-

quire weights, as in Equation 10. The weights represent

expected throughput values, which are evaluated from

the throughput measurements detailed in Section IV-F.

These are taken directly from Table IV. For example,

when DCCP/CCID2 is Flow 1 and Compound is Flow

2, at RTT=25ms, we use the values of 43Mb/s and

51Mb/s, respectively, for Rrn for DCCP/CCID2 and TCP

Compound.

IV. PROTOCOL BEHAVIOUR

In this section, we describe briefly the behaviour of the

individual protocols we will consider. Our description is

intended to highlight the main features of each protocol.

We include graphs of throughput from the output of our

testbed calibration tests:

• for an individual flow, showing their respective utili-

sation on our testbed set-up, demonstrating the end-

to-end throughput each protocol is capable of when

it is the only flow on the testbed.

• for two flows, showing that each protocol is capable

of adapting its behaviour in the presence of another

flow of the same type and resulting in convergence

to a fair share of the available end-to-end capacity.

Our selection of protocols is somewhat arbitrary: we

have chosen protocols that are widely used (or are likely

to be widely used, in the case of DCCP/CCID2), are

readily available for use within our experimental platform,

and are of interest to a user community as well as

the research community. Also, we have chosen to test

against DCCP/CCID2 from [22], rather than against TCP

NewReno, as there is already a body of work, including

our own, comparing against TCP NewReno [6]–[8], [19]

A. TCP NewReno

The basic congestion control algorithm in TCP

NewReno is well known [1]. To control transmission, a

congestion window (cwnd), is subject to Additive Increase

Multiplicative Decrease (AIMD) behaviour:

OnACK : cwnd ← cwnd + α

OnLoss : cwnd ← β.cwnd

with α = 1 and β = 0.5. The value of cwnd increases by

α segments when an ACKnowledgment is received, and

decreases a factor β when a loss is detected. The other

TCP variants typically use different algorithms to reduce

and increase the window size, and so control the rate

of transmission. In Figure 3(a), we note that TCP takes

longer to achieve higher throughput as the RTT increases.

JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009 885

© 2009 ACADEMY PUBLISHER

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
b/

s)

Time (seconds)

NewReno

25 ms
50 ms

100 ms
200 ms

(a) Single flow, at various RTT

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
b/

s)

Time (seconds)

NewReno v NewReno RTT 50 mean

NewReno
NewReno

(b) Two flows, RTT=50ms

Figure 3. NewReno: typical behaviour on our testbed

B. BIC

Binary Increase Congestion control TCP – BIC [2] –

uses a binary search algorithm between the window size

just before a reduction (Wmax) and the window size after

the reduction (Wmin). If w1 is the midpoint between

Wmin and Wmax, then the window is rapidly increased

when it is less than a specified distance, Smax, from w1,

and grows more slowly when it is near w1. If the distance

between the minimum window and the midpoint is more

then Smax, the window is increased by Smax, following a

linear increase. BIC reduces cwnd by a multiplicative fac-

tor β. If no loss occurs, the new window size becomes the

current minimum, otherwise, the window size becomes

the new maximum. If the window grows beyond the

current maximum, an exponential and then linear increase

is used to probe for the new equilibrium window size. In

Figure 4(a), compared to TCP (Figure 3(a)), BIC achieves

higher throughput and more quickly at larger RTT values.

C. CUBIC

CUBIC [3] uses a cubic function to control its conges-

tion window growth. If Wmax is the congestion window

before a loss event, then after a window reduction, the

window grows fast and then slows down as it approaches

Wmax. Around Wmax, the window grows slowly, again

accelerating as it moves away from Wmax. The following

formula determines the congestion window size (cwnd):

cwnd = C(T −K)3 + Wmax

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
b/

s)

Time (seconds)

BIC

25 ms
50 ms

100 ms
200 ms

(a) Single flow, at various RTT

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
b/

s)

Time (seconds)

BIC v BIC RTT 50 mean

BIC
BIC

(b) Two flows, RTT=50ms

Figure 4. BIC: typical behaviour on our testbed

where C is a scaling constant, T is the time since the

last loss event and K = 3

√

Wmax
β
C

, where β is the

multiplicative decrease factor after a loss event. C and β
are set to 0.4 and 0.2 respectively. To increase fairness and

stability, the window is clamped to grow linearly when it

is far from Wmax.

In Figure 5(a), compared to TCP (Figure 3(a)), CUBIC

achieves higher throughput and more quickly at larger

RTT values.

D. Compound TCP

Compound TCP [4] is designed to adapt its behaviour

by use of a scalable delay-based component. The main

objective of Compound TCP is to be friendly to TCP

NewReno, but to increase throughput more quickly in the

congestion avoidance phase. A delay-based component,

dwnd, and cwnd are used together with the advertised

window from the receiver, awnd, to determine the send-

ing rate of a Compound TCP flow. The number of back-

logged packets are estimated using RTT measurements

from successfully acknowledged packets, and used with

a threshold value, γ, to evaluate a final value for dwnd.

The TCP sending window, wnd, becomes:

OnAck : cwnd = cwnd + 1/(cwnd + awnd)

wnd = min(cwnd + dwnd, awnd)

The evaluation of dwnd is as follows:

886 JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
b/

s)

Time (seconds)

CUBIC

25 ms
50 ms

100 ms
200 ms

(a) Single flow, at various RTT

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
b/

s)

Time (seconds)

CUBIC v CUBIC RTT 50 mean

CUBIC
CUBIC

(b) Two flows, RTT=50ms

Figure 5. CUBIC: typical behaviour on our testbed

OnACK : dwnd ← dwnd + α.dwndk, D < γ

dwnd ← dwnd− η.D, D ≥ γ

OnLoss : dwnd ← dwnd.(1− β)

where k, α, β and η allow the protocol to be tuned: the

choices made currently are k = 0.75, α = 0.125, β = 0.5
and η = 1. D is the difference between the smoothed

RTT backlogged packet calculation and the non-smoothed

RTT backlogged packet calculation for the flow. γ is

evaluated dynamically as a function of cwnd and RTT,

and is constrained to the range 5 ≤ γ ≤ 30.

Compound TCP is implemented in Windows Vista,

Windows Server 2008, and available as a hotfix to Win-

dows 2003 server and Windows XP 64-bit9. Compound

TCP is also available for Linux. The implementation of

Compound TCP used in our study is Caltech’s Linux

patch10, which is written to the same specification used for

the Windows implementation. As NewReno, BIC and CU-

BIC are all available in Linux, the Caltech implementation

lends itself for easy use within our testbed, and we do not

have to factor into our analysis any differences due to the

behaviour of operating system if running Compound TCP

under Windows.

In Figure 6(a), compared to TCP (Figure 3(a)), Com-

pound achieves higher throughput and more quickly at

larger RTT values.

9http://support.microsoft.com/kb/949316
10http://netlab.caltech.edu/lachlan/ctcp/

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
b/

s)

Time (seconds)

Compound TCP

25 ms
50 ms

100 ms
200 ms

(a) Single flow, at various RTT

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
b/

s)

Time (seconds)

Compound TCP v Compound TCP RTT 50 mean

Compound TCP
Compound TCP

(b) Two flows, RTT=50ms

Figure 6. Compound: typical behaviour on testbed

E. DCCP/CCID2

The Datagram Congestion Control Protocol (DCCP),

“... is a transport protocol that provides bidirectional

unicast connections of congestion-controlled unreliable

datagrams. DCCP is suitable for applications that trans-

fer fairly large amounts of data and that can benefit

from control over the tradeoff between timeliness and

reliability.” [5]. DCCP allows different flow adaptation

mechanisms – profiles – for congestion control to be

defined and used. For example, the profile designated

“Congestion Control ID 2” (CCID2) [10] is defined to be

“TCP-like congestion control”, i.e. as close as possible to

the AIMD behaviour described in Section V-B11. It is to

be noted that, at this time, the Linux implementation of

DCCP/CCID2 is a work-in-progress, but relatively stable.

We note that on visual inspection, the behaviour of

DCCP/CCID2 is closer to that of NewReno than to

either BIC or CUBIC, and this is to be expected from

its design. In Figure 7(a), we note that although the

pattern of throughout is similar to NewReno (Figure 3(a)),

DCCP/CCID2 does not behave exactly the same, again to

be expected from its design (as will be explained in our

analysis in Section V-B).

F. Throughput

When two flows of the same protocol are transmitted

across the same path at the same time, we see that they

11Other CCIDs are also being defined: CCID3, “TCP Friendly Rate
Control (TFRC)” is also implemented in Linux.

JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009 887

© 2009 ACADEMY PUBLISHER

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
b/

s)

Time (seconds)

DCCP/CCID2

25 ms
50 ms

100 ms
200 ms

(a) Single flow, at various RTT

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
b/

s)

Time (seconds)

DCCP/CCID2 v DCCP/CCID2 RTT 50 mean

DCCP/CCID2
DCCP CCID 2

(b) Two flows, RTT=50ms

Figure 7. DCCP/CCID2: typical behaviour on testbed

achieve fairness. In Figures 3(b), 4(b), 5(b), 6(b) and 7(b)

we see examples of 2 flows and can see that for each

respective protocol, there appears to be good fairness.

Table III shows the mean value of JFI from Equation

(1), taken as a mean value over five runs, for each RTT,

confirming good fairness of each protocol against another

flow of the same protocol. Mean throughput values are

shown in Table IV. It is to be noted that, beyond 100ms

(at higher BDP), Compound has the highest throughput

values for both flows, and so has the best network

utilisation overall.

TABLE III.

JFI VALUES FOR TWO FLOWS OF THE SAME PROTOCOL (MEAN OVER

5 RUNS, FROM t = 60s TO t = 300s)

RTT (ms) [BDP (MB)] Example
25 50 100 200 Figure

[0.31] [0.62] [1.25] [2.50] Thr’put

NewReno 0.93 0.94 0.93 0.93 3(b)

BIC 0.91 0.91 0.89 0.92 4(b)

CUBIC 0.90 0.90 0.90 0.90 5(b)

Compound TCP 0.97 0.95 0.93 0.90 6(b)

CCID2 0.96 0.95 0.97 0.91 7(b)

It should be noted that, when the order of flows is

reversed, there are slightly different results (see Appendix

A), but the overall trends are still correct and the conclu-

sions drawn in this paper still stand.

V. INTER-PROTOCOL BEHAVIOUR

We now look at interaction of our chosen protocols by

examining the behaviour of two flows across the testbed.

TABLE IV.

THROUGHPUT VALUES (MB/S) FOR TWO FLOWS OF THE SAME

PROTOCOL (MEAN OVER 5 RUNS, FROM t = 60s TO t = 300s)

RTT (ms)
25 50 100 200

Flow 1 2 1 2 1 2 1 2

NewReno 39 55 40 54 38 56 38 56

BIC 33 61 33 61 32 63 34 60

CUBIC 33 61 33 62 33 61 33 62

Compound TCP 43 51 52 42 49 43 44 43

CCID2 43 51 47 47 45 48 33 32

Flow 1 was started at 0s and was a DCCP/CCID2 flow.

Flow 2 was started at 30s and was one of the TCP

variants: NewReno, BIC, CUBIC or Compound TCP. We

executed five runs of each pair-wise experiment for each

of the RTT values as explained in Section III-A. We

recorded the value of end-to-end throughput reported by

iperf at 1s intervals from t = 60s (allowing 30s for Flow

2 to stabilise) to t = 300s (the end of the experimental

run). This means that for each pair-wise combination there

are 1200 throughput measurements used per RTT value

in our evaluation.

A. Summary of observed behaviour

The throughput values were used with Equation (1),

to assess a summary of system behaviour. We also

show for each pair-wise experiment, with the tuple

〈UN−, UN , UN+〉 how the trends in fairness vary with

RTT. We use UN , plotted for each RTT, and UN+ and

UN− plotted in a similar fashion to error-bars to show the

spread of the flow NRU values at that RTT. We connect

with a line the values of UN at the various RTTs in order

to illustrate the trend in the NRU values. As we have only

two flows, the values of UN+ and UN− are, respectively,

the mean flow NRU values for each of the two flows. As

in all cases the TCP variant has higher throughput than

DCCP/CCID2, UN+ is always for the TCP variant and

UN− is for the DCCP/CCID2 flow.

As a summary of the behaviour, the values of JFI gen-

erated using Equation (1) are given in Table V (the mean

JFI values and standard deviations over five runs) and

shown in Figure 8. Table VI gives the mean throughputs

over five runs for each protocol, where Flow 1 in the table

is always DCCP/CCID2 and Flow 2 is the TCP variant

given in the first column of that row. We note that fairness

of DCCP/CCID2 and TCP NewReno is good across the

range of RTT values examined, and this is encouraging

as it meets a goal of CCID2 to be “TCP-like”. However,

our initial observation is that BIC, CUBIC and Compound

have poor fairness with CCID2 beyond an RTT value

of 25ms, and the unfairness is due to the TCP variant

using more capacity than DCCP/CCID2. BIC, CUBIC

and Compound have similar behaviour.

This behaviour is to be expected: as the RTT (and so

the BDP) increases, from examining the performance of

the individual flows (from Section IV), it can be seen that

DCCP/CCID2 becomes increasingly poor at utilising the

available capacity (Figure 7(a)), whilst BIC (Figure 4(a)),

888 JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

CUBIC (Figure 5(a)) and Compound (Figure 6(a)), have

better performance at higher BDP, as per their design.

So, the unfairness observed in Figure 8 may not nec-

essarily be a concern. Note, however, that as the RTT

increases beyond ∼100ms, the fairness improves a little

as DCCP/CCID2 throughput improves. We believe that

this is because the larger window size at the higher BDP

has a more significant effect on the end-to-end throughput

than the more aggressive behaviour of the TCP variants,

though we have not yet examined this explicitly (also see

the graphs in Appendix A).

B. DCCP/CCID2 vs NewReno

As might be expected, there is good fairness between

DCCP/CCID2 and NewReno, with J > 0.90, as seen

in Table V and visually in Figure 8. Various differences

in the CCID2 behaviour, however, mean that it will not

perform as well as NewReno. This is clearly visible in

Figure 9: we see that the UN , UN+ and UN− values

give a pretty flat trend. In Table VI, we can see that

the throughput of DCCP/CCID2 (Flow 1) is better at

lower RTTs, but starts to get slightly worse at higher

RTTs (above 100ms). Section 3.1 of [10] summarises

the similarities between SACK-based TCP (as NewReno

is) and DCCP/CCID2:

• DCCP/CCID2 uses a close variant of the AIMD be-

haviour in TCP, including window halving and linear

congestion avoidance, using the variables cwnd and

ssthresh.

• DCCP/CCID2 uses a close variant of SACK, em-

ploying an Ack Vector which contains the same

information that might be found in the TCP SACK

option.

• DCCP-Ack packets are used to measure round trip

time (including the option for a Timestamp as in

TCP), and “clock out” the data from the sender.

However, there are some differences which will have

some effect on the control of transmissions from the

sender:

• DCCP applies congestion control to the DCCP-Ack

packets it generates at the receiver. For an Ack Ratio

of R, DCCP-Acks are generated every R packets that

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 20 40 60 80 100 120 140 160 180 200

Ja
in

’s
 F

ai
rn

es
s

In
de

x

RTT (ms)

Mean Jain’s for DCCP/CCID2 against

BIC
CUBIC

New Reno
Compound TCP

Figure 8. Pair-wise behaviour, DCCP/CCID2 flow first (See Table V)

are received. This could, potentially, slow down the

rate of acknowledgements for a number of reasons,

e.g. loss/delay of a DCCP-Ack has a greater effect

on the sender when R is high, compared to TCP

which does not use congestion control on generation

of ACKs. Of course, this will depend also on packet

loss rates.

• TCP is a byte-stream protocol whilst DCCP is

datagram based, so variables such as cwnd and

ssthresh, used to control transmissions, which have

units of bytes in TCP, are measured in datagrams

in DCCP. In operations, especially at high BDP

with large window sizes, this is likely to become

insignificant compared to the rate of ACKs, unless

the datagram size is very large (e.g. if using a large

MTU).

• As DCCP does not use retransmissions, TCP fast-

recovery mechanisms are not implemented. Again,

this is likely to be an insignificant factor compared

to the rate of DCCP-Acks, unless operating in an

environment where there are high loss rates, e.g. due

to high congestion or high bit error rates.

So, overall, whilst we would expect to see good fairness

between TCP NewReno and DCCP/CCID2, the differ-

ences in design listed above are visible in the NRU

analysis in Figure 9.

C. DCCP/CCID2 vs BIC, CUBIC & Compound

Since we found that the behaviour of BIC, CUBIC and

Compound is similar, we discuss them together in this

subsection.

In the case of both BIC, CUBIC and Compound run

against DCCP/CCID2, we see from Figure 8 and Table V

that the JFI value is below 0.8 at all values of RTT

above 25ms, i.e. there would appear, at first sight, to be

a great deal of unfairness between BIC or CUBIC, and

TABLE V.

〈JFI VALUES, STANDARD DEVIATION〉 FOR PAIR-WISE TESTS

AGAINST DCCP/CCID2, FLOW 1 = DCCP/CCID2, FLOW 2 = TCP

(MEAN OVER 5 RUNS, FROM t = 60s TO t = 300s) (SEE FIGURE 8)

RTT (ms) [BDP (MB)]
25 50 100 200

[0.31] [0.62] [1.25] [2.50]

Reno 0.94, 0.01 0.96, 0.01 0.94, 0.02 0.91, 0.03

BIC 0.94, 0.02 0.80, 0.07 0.67, 0.11 0.78, 0.1

CUBIC 0.94, 0.02 0.80, 0.08 0.69, 0.11 0.85, 0.1

Compound TCP 0.93, 0.02 0.85, 0.05 0.69, 0.11 0.85, 0.9

TABLE VI.

THROUGHPUT (MB/S) FOR PAIR-WISE TESTS AGAINST

DCCP/CCID2 (MEAN OVER 5 RUNS, FROM t = 60s TO t = 300s)

RTT (ms)
25 50 100 200

Flow 1 2 1 2 1 2 1 2

NewReno 56 38 52 42 41 50 32 36

BIC 40 54 26 67 16 74 23 70

CUBIC 40 54 25 68 16 74 27 67

Compound TCP 38 56 30 63 16 74 28 65

JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009 889

© 2009 ACADEMY PUBLISHER

-5

-4

-3

-2

-1

 0

 1

 2

 0 50 100 150 200

S
ys

te
m

 N
R

U

RTT (ms)

DCCP CCID 2 vs NewReno - System NRU

Figure 9. DCCP/CCID2 vs TCP NewReno - NRU

-5

-4

-3

-2

-1

 0

 1

 2

 0 50 100 150 200

S
ys

te
m

 N
R

U

RTT (ms)

DCCP CCID 2 vs BIC - System NRU

Figure 10. DCCP/CCID2 vs BIC - NRU

DCCP/CCID2. In Table VI, we see that BIC and CUBIC

always have a higher throughput than DCCP/CCID2, at

all our RTT values.

However, it is not sufficient just to consider the JFI

of the pair-wise tests in order to make a true as-

sessment of fairness. We must also consider that the

high-speed variants are designed for high BDP paths,

whereas DCCP/CCID2 is designed to exhibit “TCP-like”

behaviour. So, for all the protocols, we must take into

account their respective likely throughputs under circum-

stances where they may be competing equally with the

other flow in the experimental run. That is, we need to

make an assessment of whether or not DCCP/CCID2

is actually being constrained by the more aggressive

behaviour of the TCP variant. Is the higher throughput

of the TCP variant flows due simply to those protocols

using the capacity that DCCP/CCID2 is not able to use

effectively at high BDPs?

We can answer this question by comparing the mean

throughput figures in Table VI (which records the mean

throughputs of the pair-wise experiments) and Table IV

(which records the mean throughputs of two flows of the

same protocol). So, we are trying to assess fairness not

just by looking at the JFI values, but also by comparing

the protocol performance of DCCP/CCID2 against a

protocol with which it has very fair behaviour at all RTTs,

i.e. itself.

Note that the definition of NRU in Equations 3, 4, and

the use of the weights as described in Section II-G is such

that the NRU explicitly includes this normalisation of the

throughput.

-5

-4

-3

-2

-1

 0

 1

 2

 0 50 100 150 200

S
ys

te
m

 N
R

U

RTT (ms)

DCCP CCID 2 vs CUBIC - System NRU

Figure 11. DCCP/CCID2 vs CUBIC - NRU

-5

-4

-3

-2

-1

 0

 1

 2

 0 50 100 150 200

S
ys

te
m

 N
R

U

RTT (ms)

DCCP CCID 2 vs Compound TCP - System NRU

Figure 12. DCCP/CCID2 vs Compound TCP - NRU

Let us first consider BIC at RTT=25ms. Recall

that in our pair-wise experiments, Flow 1 is always

DCCP/CCID2. So, let us compare the Flow 1 values in

Table IV for CCID2, and the values at the same RTT in

Table VI. We find that at RTT=25ms, the throughputs of

both DCCP/CCID2 and BIC are similar: DCCP/CCID2

(Table IV Flow 1) is 43Mb/s, and BIC (Table IV Flow 2)

is 51Mb/s; DCCP/CCID2 (Table VI Flow 1) is 40Mb/s,

and BIC (Table VI Flow 2) is 54Mb/s. So, there is very

good fairness, arguably even better than the value of

JFI=0.93 suggests (from Table V).

Let us now consider BIC at RTT=100ms. We find that

the throughputs of both DCCP/CCID2 and BIC are very

different: DCCP/CCID2 (Table IV Flow 1) is 45Mb/s,

and BIC (Table IV Flow 2) is 49Mb/s; DCCP/CCID2

(Table VI Flow 1) is 15Mb/s, and BIC (Table VI Flow 2)

is 74Mb/s. It seems clear that in this case, the “non-TCP-

like” behaviour of BIC has a detrimental effect on the end-

to-end throughput of DCCP/CCID2: BIC is being more

aggressive than DCCP/CCID2 and causing unfairness,

arguably worse than the JFI value of 0.66 might reflect,

as the DCCP/CCID2 throughput is approximately a third

of what it would be against another DCCP/CCID2 flow.

We observe this clearly in the NRU plots for BIC

(Figure 10), CUBIC (Figure 11), and Compound BIC

(Figure 12). We see the great difference in value between

UN+ and UN−, and observe the general trend for UN .

We note that greatest unfairness in all three cases is at

100ms, and that fairness improves at 200ms.

890 JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

TABLE VII.

SYSTEM NRU TUPLES FOR 14 FLOW TEST IN NS2 (SEE FIGURE 13(A))

RTT (ms)
25 50 75 100

〈−,−10.51, 3.21〉 〈−,−11.70, 1.94〉 〈−,−12.28, 1.80〉 〈−,−12.97, 1.68〉
RTT (ms)

125 150 175 200

〈0.02,−15.57, 2.56〉 〈0.10,−16.98, 1.57〉 〈0.10,−17.74, 2.88〉 〈0.10,−18.47, 2.44〉

TABLE VIII.

JFI VALUES FOR 14 FLOWS (SINGLE RUN) (SEE FIGURE 13(B))

RTT (ms)
25 50 75 100 125 150 175 200

JFI 0.51 0.30 0.25 0.24 0.22 0.20 0.20 0.19

D. Larger numbers of flows

We now show the use of the NRU with larger numbers

of flows using simulation. Note that these simulation

results should not be considered as rigourous as those

for our pair-wise tests above: our focus is to show

the characteristics of the NRU and the actual protocol

behaviour is not important.

We simulated a 14-flow system using ns2 patched with

the ns2 Linux extension from [23], allowing Linux kernel

code for different transport protocols to be executed from

within ns2 . We used 14 different TCP variants, one of

each type supported by [23]. We used the same scenario

and topology as for our testbed albeit with 14 senders and

14 receivers. Flows were started at 30s intervals (from

t = 0) until all flows were active. The simulation lasted

for 900s and we analysed data points from t = 420s
to t = 900s in order to avoid any start-up artefacts

from the flows. Table VII, Table VIII and Figure 13

shows the JFI and system NRU values (plotted as the

tuple 〈UN+, UN , UN−〉) for the 14 variants. The NRU

weights were calculated in a similar fashion to that for

our testbed, i.e. using a run of 14 flows of the same type.

We conducted only a single run of the simulation in each

case.

When we compare the JFI graph and NRU graph

in Figure 13, we see that the JFI shows the system

becoming increasingly unfair as the RTT increases, but

the NRU shows that the mean system fairness improves

after 100ms, as we take into account the relative capability

of each protocol flow at those higher BDPs. Also, we see

in the NRU plot that there are some flows that do perform

better at 125ms and beyond, which is not visible in the JFI

plot. Also, JFI depicts unfairness but masks the relative

magnitude of reduction in performance, an aspect which

is clearly visible in the NRU values (Table VII).

VI. CONCLUSIONS AND FUTURE WORK

We have examined the interaction between

DCCP/CCID2, which is currently being implemented and

deployed, and variants of TCP that are already widely

used: TCP NewReno, BIC, CUBIC and Compound. We

have observed that, on our testbed,s with link speeds of

100Mb/s and at RTTs of 25ms, 50ms, 100ms and 200ms,

(a) System NRU (See Table VII)

(b) JFI (See Table VIII)

Figure 13. Comparing NRU and JFI for 14-flow inter-protocol behaviour

DCCP/CCID2 has good fairness with TCP NewReno at

all RTT values, though NewReno does achieve a slightly

higher throughput. BIC, CUBIC, and Compound always

achieved higher throughputs in our tests, becoming unfair

above RTT=25ms, with greatest unfairness at 100ms,

after which, fairness improves as the RTT increases. So,

in environments where the normal 64KB TCP window

is exceed, where DCCP/CCID2 is sharing an end-to-end

path with mainly TCP NewReno flows, it is likely that

there will be good fairness to DCCP flows. With BIC

and/or CUBIC and/or Compound, DCCP/CCID2 will

achieve lower utilisation as these protocols have been

observed to show lower fairness to DCCP/CCID2 in

our tests, being more aggressive at higher BDPs than

DCCP/CCID2.

The use of our new metric, Normalised Resource Usage

(NRU), allows us to have an appropriate assessment

of fairness, weighted by the relative capability of each

protocol within the environment being considered.

JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009 891

© 2009 ACADEMY PUBLISHER

A. Limitations

The NRU’s key benefit, the use of weights that provide

the assessment of relative capability, is potentially also

a limitation of the method. The key question is “How

do we find appropriate values for the weights?” Our

approach, with two flows (on our testbed) and 14 flows

(in simulation), has used calibration runs in order to

assess what each flow would achieve if competing with

itself. Unfortunately, the use of calibration runs does not

scale well as the number of flows increases. However,

it should be possible to use other techniques to estimate

the weights as the need arises, and the exact nature of the

approximation is likely to be dependent on the system set-

up. Meanwhile, it is to be noted that most studies in the

literature typically make experimental assessments with

small numbers of flows, e.g. two flows are used, as we

have done in this paper, and also in past work, such as

[7], [8]. So, for such purposes, our methodology is quite

suitable and provides more accurate evaluation of fairness

than Jain’s Fairness Index (JFI).

B. Thoughts for future work

The “dip” in fairness as observed in Figure 8 (and the

effects observed in Appendix A) need to be investigated.

It is not clear from our experiments why the fairness

decreases (as one might expect) but then increases, with

increasing RTT. Also, does this trend continue at higher

BDP, e.g. at link speeds of 1Gb/s and/or higher RTT

values?

It can be seen that as we approach the higher RTT

values, the fairness is improving for the TCP variants in

Figure 8 but not in Figure 14 (see Appendix A). It would

be informative to investigate the reason for this difference

in behaviour. Also, it would be informative to observe

the flow dynamics at higher BDP values, for example

at higher speeds such as several 100 Mb/s or 1Gb/s.

Such high speeds may well be an application domain

for DCCP as desktop/access speeds improve, and more

demanding applications begin to use DCCP, for example

the media streaming and Grid applications mentioned in

the introduction.

DCCP/CCID2 can also operate using Explicit Conges-

tion Notification (ECN). Would use of ECN result in an

improvement in throughput or fairness?

ACKNOWLEDGEMENTS

We are grateful to the anonymous reviewers whose

comments have helped us improve the quality of the

presentation in this paper.

REFERENCES

[1] V. Jacobson and M. J. Karels, “Congestion Avoidance
and Control,” Proc SIGCOMM 1988, pp. 314–329,
September 1988. [Online]. Available: citeseer.ist.psu.edu/
article/jacobson88congestion.html

[2] L. Xu, K. Harfoush, and I. Rhee, “Binary increase con-
gestion control for fast long-distance networks,” in IEEE
INFOCOM, Mar 2004.

[3] L. Xu and I. Rhee, “CUBIC: A new TCP-Friendly high-
speed TCP variant,” in Third International Workshop on
Protocols for Fast Long-Distance Networks (PFLDNet05),
Feb 2005.

[4] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A Com-
pound TCP approach for high-speed and long distance
networks,” in Proc. IEEE INFOCOM 2006, Barcelona,
April 2006.

[5] E. Kohler, M. Handley, and S. Floyd, “Datagram
Congestion Control Protocol (DCCP),” RFC 4340
(Proposed Standard), Mar. 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4340.txt

[6] D. Miras, M. Bateman, and S. Bhatti, “Fairness of High-
Speed TCP Stacks,” in Proc. AINA2008 - IEEE 22nd Inter-
national Conference on Advanced Information Networking
and Applications, March 2008.

[7] S. Ha, Y. Kim, L. Le, I. Rhee, and L. Xu, “A Step
Toward Realistic Performance Evaluation of High-Speed
TCP Variants,” in Fourth International Workshop on Pro-
tocols for Fast Long-Distance Networks (PFLDNet06), Feb
2006.

[8] Y.-T. Li, D. Leith, and R. N. Shorten, “Experimental
Evaluation of TCP Protocols for High-Speed
Networks,” IEEE/ACM Transactions on Networking,
to appear. [Online]. Available: http://www.hamilton.ie/net/
eval/ToNfinal.pdf

[9] D.-M. Chiu and R. Jain, “Analysis of the increase and
decrease algorithms for congestion avoidance in computer
networks,” Computer Networks and ISDN Systems, vol. 17,
no. 1, pp. 1–14, 1989.

[10] S. Floyd and E. Kohler, “Profile for Datagram Congestion
Control Protocol (DCCP) Congestion Control ID 2: TCP-
like Congestion Control,” RFC 4341 (Proposed Standard),
Mar. 2006. [Online]. Available: http://www.ietf.org/rfc/
rfc4341.txt

[11] S. Floyd, “Metrics for the Evaluation of Congestion
Control Mechanisms,” RFC 5166 (Informational), Mar.
2008. [Online]. Available: http://www.ietf.org/rfc/rfc5166.
txt

[12] J. Jaffe, “Bottleneck Flow Control,” IEEE Transactions on
Communications, vol. 29, no. 7, pp. 954–962, July 1981.

[13] F. Kelly, A. Maulloo, and D. Tan, “Rate control in
communication networks: shadow prices, proportional
fairness and stability,” in Journal of the Operational
Research Society, vol. 49, 1998, pp. 237–252. [Online].
Available: http://www.statslab.cam.ac.uk/∼frank/rate.pdf

[14] S. Kunniyur and R. Srikant, “End-to-end Congestion Con-
trol Schemes: Utility Functions, Random Losses and ECN
Marks,” IEEE/ACM Transactions on Networking, vol. 11,
no. 5, pp. 689–702, October 2003.

[15] B. Briscoe, “Flow rate fairness: dismantling a religion,”
SIGCOMM Computer Communication Review, vol. 37,
no. 2, pp. 63–74, 2007.

[16] S. Floyd and M. Allman, “Comments on the Usefulness
of Simple Best-Effort Traffic,” RFC 5290 (Informational),
July 2008. [Online]. Available: http://www.ietf.org/rfc/
rfc5290.txt

[17] Y.-T. Li, D. Leith, and R. N. Shorten, “Experimental
Evaluation of TCP Protocols for High-Speed Networks,”
IEEE/ACM Transactions on Networking, vol. 15, no. 5,

892 JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

pp. 1109–1122, Oct 2007. [Online]. Available: http:
//www.hamilton.ie/net/eval/ToNfinal.pdf

[18] S. Ha, Y. Kim, L. Le, I. Rhee, and L. Xu, “A Step
Toward Realistic Performance Evaluation of High-Speed
TCP Variants,” in Fourth International Workshop on Pro-
tocols for Fast Long-Distance Networks (PFLDNet06), Feb
2006.

[19] M. Bateman, S. Bhatti, G. Bigwood, D. Rehunathan,
C. Allison, T. Henderson, and D. Miras, “A Comparison
of TCP Behaviour at High Speeds Using ns-2 and Linux,”
in CNS2008 - 11th Communications and Networking Sim-
ulation Symposium, April 2008.

[20] S. Bhatti, M. Bateman, D. Rehunathan, T. Henderson,
G. Bigwood, and D. Miras, “Revisiting inter-flow fairness,”
in Proceedings of BROADNETS 2008, September 2008, pp.
585–592.

[21] S. Floyd and E. Kohler, “Internet research needs better
models,” in Proceedings of HotNets–I, October 2002.

[22] S. Bhatti, M. Bateman, and D. Miras, “A Comparative
Performance Evaluation of DCCP,” in Proceedings of
SPECTS 2008, June 2008.

[23] D. X. Wei and P. Cao, “NS-2 TCP-Linux: an NS-2 TCP
implementation with congestion control algorithms from
Linux,” in WNS2 ’06: Proceeding from the 2006 workshop
on ns-2: the IP network simulator. New York, NY, USA:
ACM Press, 2006, p. 9.

Saleem Bhatti is a Professor in the School of Computer

Science, University of St Andrews, Scotland, UK. His

research interests include network architecture, protocols

and systems; network and systems management; security,

QoS and performance of networked systems; and issues

related to the control-plane of networked systems. He

holds a B.Eng (Hons), a MSc (Distinction), and a PhD

all from University College London (UCL), UK.

http://www.cs.st-andrews.ac.uk/˜saleem/

Martin Bateman is a Research Fellow in the School

of Computer Science, University of St Andrews, Scot-

land, UK. His research include interests network QoS,

performance of networked systems, video analysis and

middleware systems. He holds a BSc (Hons) and MSc

(Distinction) from Lancaster University, UK and a PhD

from the University of St Andrews, UK.

http://www.cs.st-andrews.ac.uk/˜mb/

APPENDIX A

Here, we present a short discussion, using the same

testbed as the main paper, and the same experimental

method (including number of runs, calibration runs, etc.).

The purpose of this Appendix is to show that results could

differ if were to start the DCCP/CCID2 flows as Flow 2

rather than as Flow 1, but that we have in the main paper

captured what we consider as a worst case scenario.

If we run the experiments as before, but with the TCP

variant as Flow 1, and DCCP/CCID2 as Flow 2, we get

results for JFI values as shown in Table IX and Figure 14.

We note that the behaviour for BIC and CUBIC is quite

different from that in Figure 8. The NRU plots are also

differnt. The NRU plots should be compared as follows:

Figure 9 with Figure 15; Figure 10 with Figure 16; Figure

11 with Figure 17; and Figure 12 with Figure 18.

There is still unfairness with DCCP/CCID2 but the

effect is not the same for BIC and CUBIC. We observe

that there is more distinction between BIC, CUBIC and

Compound. Also, that the greatest unfairness is at 200ms

and not 100ms: the “dip” at 100ms has disappeared for

BIC and CUBIC, compared to when the DCCP/CCID2

flow was started first.

This behaviour needs to be investigated further in future

work. We see in Figure 8, Table V and Table VI, that

when the DCCP/CCID2 flow is Flow 1, that unfairness

starts after 25ms. So, in our main text, we have effectively

analysed a worse case compared to Figure 14.

TABLE IX.

〈JFI VALUES, STANDARD DEVIATION〉 FOR PAIR-WISE TESTS

AGAINST DCCP/CCID2, FLOW 1 = TCP, FLOW 2 = DCCP/CCID2

(MEAN OVER 5 RUNS, FROM t = 60s TO t = 300s) (SEE FIGURE 14)

RTT (ms) [BDP (MB)]
25 50 100 200

[0.31] [0.62] [1.25] [2.5]

Reno 0.89, 0.01 0.88, 0.1 0.90, 0.02 0.80, 0.05

BIC 0.92, 0.01 0.93, 0.01 0.85, 0.4 0.53, 0.19

CUBIC 0.93, 0.01 0.93, 0.01 0.83, 0.05 0.60, 0.14

Compound TCP 0.95, 0.01 0.83, 0.06 0.66, 0.13 0.86, 0.11

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 20 40 60 80 100 120 140 160 180 200

Ja
in

’s
 F

ai
rn

es
s

in
de

x

RTT (ms)

Mean Jain’s Fairness DCCP/CCID2

BIC
CUBIC

New Reno
Compound TCP

Figure 14. Pair-wise behaviour, TCP variant flow first (See Table IX)

JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009 893

© 2009 ACADEMY PUBLISHER

TABLE X.

THROUGHPUT (MB/S) FOR PAIR-WISE TESTS AGAINST DCCP/CCID2, TCP VARIANT FLOW FIRST (MEAN OVER 5 RUNS, MEASUREMENTS

FROM t = 60s TO t = 300s)

RTT (ms)
25 50 100 200

Flow 1 2 1 2 1 2 1 2

NewReno 17 29 18 32 21 31 15 37

BIC 19 28 25 27 32 16 36 8

CUBIC 19 29 25 27 34 15 35 8

Compound TCP 52 42 65 28 66 16 66 28

-5

-4

-3

-2

-1

 0

 1

 2

 0 50 100 150 200

S
ys

te
m

 N
R

U

RTT (ms)

NewReno vs DCCP CCID 2 - System NRU

Figure 15. TCP NewReno vs DCCP/CCID2 - NRU

-5

-4

-3

-2

-1

 0

 1

 2

 0 50 100 150 200

S
ys

te
m

 N
R

U

RTT (ms)

BIC vs DCCP CCID 2 - System NRU

Figure 16. BIC vs DCCP/CCID2 - NRU

-5

-4

-3

-2

-1

 0

 1

 2

 0 50 100 150 200

S
ys

te
m

 N
R

U

RTT (ms)

CUBIC vs DCCP CCID 2 - System NRU

Figure 17. CUBIC vs DCCP/CCID2 - NRU

-5

-4

-3

-2

-1

 0

 1

 2

 0 50 100 150 200

S
ys

te
m

 N
R

U

RTT (ms)

Compound vs DCCP CCID 2 - System NRU

Figure 18. Compound TCP vs DCCP/CCID2 - NRU

894 JOURNAL OF NETWORKS, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

