251 research outputs found

    Bioarchaeological and palaeogenomic portrait of two Pompeians that died during the eruption of Vesuvius in 79 AD

    Get PDF
    The archaeological site of Pompeii is one of the 54 UNESCO World Heritage sites in Italy, thanks to its uniqueness: the town was completely destroyed and buried by a Vesuvius’ eruption in 79 AD. In this work, we present a multidisciplinary approach with bioarchaeological and palaeogenomic analyses of two Pompeian human remains from the Casa del Fabbro. We have been able to characterize the genetic profle of the frst Pompeian’ genome, which has strong afnities with the surrounding central Italian population from the Roman Imperial Age. Our fndings suggest that, despite the extensive connection between Rome and other Mediterranean populations, a noticeable degree of genetic homogeneity exists in the Italian peninsula at that time. Moreover, palaeopathological analyses identifed the presence of spinal tuberculosis and we further investigated the presence of ancient DNA from Mycobacterium tuberculosis. In conclusion, our study demonstrates the power of a combined approach to investigate ancient humans and confrms the possibility to retrieve ancient DNA from Pompeii human remains. Our initial fndings provide a foundation to promote an intensive and extensive paleogenetic analysis in order to reconstruct the genetic history of population from Pompeii, a unique archaeological site

    Pharmacogenetics of autoimmune diseases: Research issues in the case of Multiple Sclerosis and the role of IFN-beta

    Get PDF
    Pharmacogenetics of auto-immune diseases is a complex field of application for this relatively new discipline, since we still have a partial knowledge of the biological mechanisms of the disease and of the drugs currently used to treat it. We address a few key issues that emerge when planning a pharmacogenetic investigation in Multiple Sclerosis and that relate to the complexities existing at the biological-genetic level and at the phenotypic characterization. In fact, we think that a clearer characterization of the clinical phenotype representing the end-point of the investigation together with a critical appraisal of the multi-faceted dimension of the genetic component of either the disease and the pharmacogenetic profile of the drug investigated, will help to design more thorough study and to achieve deeper understanding of the practical results. We will primarily focus our research considerations on the role of Interferon Beta (IFN-beta) as a prototypal therapeutic agent in Multiple Sclerosis

    A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis

    Get PDF
    The cause of sporadic amyotrophic lateral sclerosis (ALS) is largely unknown, but genetic factors are thought to play a significant role in determining susceptibility to motor neuron degeneration. To identify genetic variants altering risk of ALS, we undertook a two-stage genome-wide association study (GWAS): we followed our initial GWAS of 545 066 SNPs in 553 individuals with ALS and 2338 controls by testing the 7600 most associated SNPs from the first stage in three independent cohorts consisting of 2160 cases and 3008 controls. None of the SNPs selected for replication exceeded the Bonferroni threshold for significance. The two most significantly associated SNPs, rs2708909 and rs2708851 [odds ratio (OR) = 1.17 and 1.18, and P-values = 6.98 x 10–7 and 1.16 x 10–6], were located on chromosome 7p13.3 within a 175 kb linkage disequilibrium block containing the SUNC1, HUS1 and C7orf57 genes. These associations did not achieve genome-wide significance in the original cohort and failed to replicate in an additional independent cohort of 989 US cases and 327 controls (OR = 1.18 and 1.19, P-values = 0.08 and 0.06, respectively). Thus, we chose to cautiously interpret our data as hypothesis-generating requiring additional confirmation, especially as all previously reported loci for ALS have failed to replicate successfully. Indeed, the three loci (FGGY, ITPR2 and DPP6) identified in previous GWAS of sporadic ALS were not significantly associated with disease in our study. Our findings suggest that ALS is more genetically and clinically heterogeneous than previously recognized. Genotype data from our study have been made available online to facilitate such future endeavors

    The evolutionary history of common genetic variants influencing human cortical surface area

    Get PDF
    Structural brain changes along the lineage leading to modern Homo sapiens contributed to our distinctive cognitive and social abilities. However, the evolutionarily relevant molecular variants impacting key aspects of neuroanatomy are largely unknown. Here, we integrate evolutionary annotations of the genome at diverse timescales with common variant associations from large-scale neuroimaging genetic screens. We find that alleles with evidence of recent positive polygenic selection over the past 2000–3000 years are associated with increased surface area (SA) of the entire cortex, as well as specific regions, including those involved in spoken language and visual processing. Therefore, polygenic selective pressures impact the structure of specific cortical areas even over relatively recent timescales. Moreover, common sequence variation within human gained enhancers active in the prenatal cortex is associated with postnatal global SA. We show that such variation modulates the function of a regulatory element of the developmentally relevant transcription factor HEY2 in human neural progenitor cells and is associated with structural changes in the inferior frontal cortex. These results indicate that non-coding genomic regions active during prenatal cortical development are involved in the evolution of human brain structure and identify novel regulatory elements and genes impacting modern human brain structure

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    Genetic Analysis of Quantitative Phenotypes in AD and MCI: Imaging, Cognition and Biomarkers

    No full text
    The Genetics Core of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), formally established in 2009, aims to provide resources and facilitate research related to genetic predictors of multidimensional Alzheimer’s disease (AD)-related phenotypes. Here, we provide a systematic review of genetic studies published between 2009 and 2012 where either ADNI APOE genotype or genome-wide association study (GWAS) data were used. We review and synthesize ADNI genetic associations with disease status or quantitative disease endophenotypes including structural and functional neuroimaging, fluid biomarker assays, and cognitive performance. We also discuss the diverse analytical strategies used in these studies, including univariate and multivariate analysis, meta-analysis, pathway analysis, and interaction and network analysis. Finally, we perform pathway and network enrichment analyses of these ADNI genetic associations to highlight key mechanisms that may drive disease onset and trajectory. Major ADNI findings included all the top 10 AD genes and several of these (e.g., APOE, BIN1, CLU, CR1, and PICALM) were corroborated by ADNI imaging, fluid and cognitive phenotypes. ADNI imaging genetics studies discovered novel findings (e.g., FRMD6) that were later replicated on different data sets. Several other genes (e.g., APOC1, FTO, GRIN2B, MAGI2, and TOMM40) were associated with multiple ADNI phenotypes, warranting further investigation on other data sets. The broad availability and wide scope of ADNI genetic and phenotypic data has advanced our understanding of the genetic basis of AD and has nominated novel targets for future studies employing next-generation sequencing and convergent multi-omics approaches, and for clinical drug and biomarker development

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Combined analysis of 635 patients confirms an age-related association of the serotonin 2A receptor gene with tardive dyskinesia and specificity for the non-orofacial subtype

    Get PDF
    Tardive dyskinesia (TD) is an important limiting factor in the use of typical antipsychotic drugs. Genetic variability in the serotonin 2A (5-HT2A) receptor may influence risk for TD but the results of prior studies are not confirmatory. The objective of this study was to determine association of T102C and His452Tyr polymorphisms in the 5-HT2A receptor gene (HTR2A) with TD in a large, multicentre patient sample. The design employed case-control analysis controlling for possible confounders using pooled, original data from published and available unpublished samples and employing logistic regression, analysis of variance and meta-analysis. The study sample consisted of 635 patients with schizophrenia or schizoaffective disorder (256 with TD and 379 without TD) drawn from five research centres, divided into six groups based on population origin. The main outcome measure was association of a categorical diagnosis of TD based on the Research Diagnostic Criteria for TD with HTR2A T102C and His452Tyr genotypes and haplotypes. The findings indicate significant association of TD with HTR2A T102C genotype (p = 0.002) over and above the effect of population group, also when controlling for age and gender (p = 0.0008), but not with His452Tyr genotype. The T102C genotype was significantly associated with TD in older (> median age 47 yr, p = 0.002) but not younger patients and in patients with non-orofacial (limb-truncal) (p=0.001) but not orofacial TD. By meta-analysis the Mantel-Haenszel (M-H) pooled odds ratio (OR) across all the available data was 1.64. A T102C-His452Tyr haplotype was significantly associated with TD (p = 0.0008). These findings confirm that genetic variability in HTR2A contributes a small but significant degree of risk for the expression of TD, particularly in older patients and specifically for the non-orofacial (limb-truncal) type. Together with other genetic variants associated with TD the findings could be used to assess risk in patients who are candidates for treatment with typical antipsychotic medications

    Huntington's disease cerebrospinal fluid seeds aggregation of mutant huntingtin

    Get PDF
    Huntington's disease (HD), a progressive neurodegenerative disease, is caused by an expanded CAG triplet repeat producing a mutant huntingtin protein (mHTT) with a polyglutamine-repeat expansion. Onset of symptoms in mutant huntingtin gene-carrying individuals remains unpredictable. We report that synthetic polyglutamine oligomers and cerebrospinal fluid (CSF) from BACHD transgenic rats and from human HD subjects can seed mutant huntingtin aggregation in a cell model and its cell lysate. Our studies demonstrate that seeding requires the mutant huntingtin template and may reflect an underlying prion-like protein propagation mechanism. Light and cryo-electron microscopy show that synthetic seeds nucleate and enhance mutant huntingtin aggregation. This seeding assay distinguishes HD subjects from healthy and non-HD dementia controls without overlap (blinded samples). Ultimately, this seeding property in HD patient CSF may form the basis of a molecular biomarker assay to monitor HD and evaluate therapies that target mHTT
    corecore