414 research outputs found

    Application of Nitrogen and Carbon Stable Isotopes (δ15Ν and δ13C) to Quantify Food Chain Length and Trophic Structure

    Get PDF
    Increasingly, stable isotope ratios of nitrogen (delta N-15) and carbon (delta C-13) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using delta N-15, and carbon range (CR) using delta C-13, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in delta N-15 ordelta C-13 from source to consumer) between trophic levels and among food chains. delta N-15 discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. delta C-13 discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of delta C-13 as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of ecological systems

    Contribution of anadromous fish to the diet of European catfish in a large river system

    Get PDF
    Many anadromous fish species, when migrating from the sea to spawn in fresh waters, can potentially be a valuable prey for larger predatory fish, thereby efficiently linking these two ecosystems. Here, we assess the contribution of anadromous fish to the diet of European catfish (Silurus glanis) in a large river system (Garonne, southwestern France) using stable isotope analysis and allis shad (Alosa alosa) as an example of anadromous fish. Allis shad caught in the Garonne had a very distinct marine delta(13)C value, over 8 per thousand higher after lipid extraction compared to the mean delta(13)C value of all other potential freshwater prey fish. The delta(13)C values of European catfish varied considerably between these two extremes and some individuals were clearly specializing on freshwater prey, whereas others specialized on anadromous fish. The mean contribution of anadromous fish to the entire European catfish population was estimated to be between 53% and 65%, depending on the fractionation factor used for delta(13)C

    Isotopic and molecular distributions of biochemicals from fresh and buried Rhizophora mangle leaves†

    Get PDF
    Rhizophora mangle L. (red mangrove) is the dominant species of mangrove in the Americas. At Twin Cays, Belize (BZ) red mangroves are present in a variety of stand structures (tall >5 m in height, transition ~2–4 m and dwarf ~1–1.5 m). These height differences are coupled with very different stable carbon and nitrogen isotopic values[1] (mean tall δ(13)C = -28.3‰, δ(15)N = 0‰; mean tall δ(13)C = -25.3‰, δ(15)N = -10‰). To determine the utility of using these distinct isotopic compositions as 'biomarkers' for paleoenvironmental reconstruction of mangrove ecosystems and nutrient availability, we investigated the distribution and isotopic (δ(13)C and δ(15)N) composition of different biochemical fractions (water soluble compounds, free lipids, acid hydrolysable compounds, individual amino acids, and the residual un-extractable compounds) in fresh and preserved red mangrove leaves from dwarf and tall trees. The distribution of biochemicals are similar in dwarf and tall red mangrove leaves, suggesting that, regardless of stand structure, red mangroves use nutrients for biosynthesis and metabolism in a similar manner. However, the δ(13)C and δ(15)N of the bulk leaf, the biochemical fractions, and seven amino acids can be used to distinguish dwarf and tall trees at Twin Cays, BZ. The data support the theory that the fractionation of carbon and nitrogen occurs prior to or during uptake in dwarf and tall red mangrove trees. Stable carbon and nitrogen isotopes could, therefore, be powerful tools for predicting levels of nutrient limitation at Twin Cays. The δ(13)C and δ(15)N of biochemical fractions within preserved leaves, reflect sedimentary cycling and nitrogen immobilization. The δ(15)N of the immobilized fraction reveals the overlying stand structure at the time of leaf deposition. The isotopic composition of preserved mangrove leaves could yield significant information about changes in ecosystem dynamics, nutrient limitation and past stand structure in mangrove paleoecosystems

    Diet and food strategies in a southern al-Andalusian urban environment during Caliphal period, ecija, Sevilla

    Get PDF
    The Iberian medieval period is unique in European history due to the widespread socio-cultural changes that took place after the arrival of Arabs, Berbers and Islam in 711 AD. Recently, isotopic research has been insightful on dietary shifts, status, resource availability and the impact of environment. However, there is no published isotopic research exploring these factors in southern Iberian populations, and as the history of this area differs to the northern regions, this leaves a significant lacuna in our knowledge. This research fills this gap via isotopic analysis of human (n = 66) and faunal (n = 13) samples from the 9th to the 13th century Écija, a town renowned for high temperatures and salinity. Stable carbon (δ13C) and nitrogen (δ15N) isotopes were assessed from rib collagen, while carbon (δ13C) values were derived from enamel apatite. Human diet is consistent with C3 plant consumption with a very minor contribution of C4 plants, an interesting feature considering the suitability of Écija to C4 cereal production. δ15N values vary among adults, which may suggest variable animal protein consumption or isotopic variation within animal species due to differences in foddering. Consideration of δ13C collagen and apatite values together may indicate sugarcane consumption, while moderate δ15N values do not suggest a strong aridity or salinity effect. Comparison with other Iberian groups shows similarities relating to time and location rather than by religion, although more multi-isotopic studies combined with zooarchaeology and botany may reveal subtle differences unobservable in carbon and nitrogen collagen studies alone.OLC is funded by Plan Galego I2C mod.B (ED481D 2017/014). The research was partially funded by the projects “Galician Paleodiet” and by Consiliencia network (ED 431D2017/08) Xunta de GaliciaS

    Integrating isotopes and documentary evidence : dietary patterns in a late medieval and early modern mining community, Sweden

    Get PDF
    We would like to thank the Archaeological Research Laboratory, Stockholm University, Sweden and the Tandem Laboratory (Ångström Laboratory), Uppsala University, Sweden, for undertaking the analyses of stable nitrogen and carbon isotopes in both human and animal collagen samples. Also, thanks to Elin Ahlin Sundman for providing the δ13C and δ15N values for animal references from Västerås. This research (Bäckström’s PhD employment at Lund University, Sweden) was supported by the Berit Wallenberg Foundation (BWS 2010.0176) and Jakob and Johan Söderberg’s foundation. The ‘Sala project’ (excavations and analyses) has been funded by Riksens Clenodium, Jernkontoret, Birgit and Gad Rausing’s Foundation, SAU’s Research Foundation, the Royal Physiographic Society of Lund, Berit Wallenbergs Foundation, Åke Wibergs Foundation, Lars Hiertas Memory, Helge Ax:son Johnson’s Foundation and The Royal Swedish Academy of Sciences.Peer reviewedPublisher PD

    Interpreting ancient food practices:Stable isotope and molecular analyses of visible and absorbed residues from a year-long cooking experiment

    Get PDF
    Chemical analyses of carbonized and absorbed organic residues from archaeological ceramic cooking vessels can provide a unique window into the culinary cultures of ancient people, resource use, and environmental effects by identifying ingredients used in ancient meals. However, it remains uncertain whether recovered organic residues represent only the final foodstuffs prepared or are the accumulation of various cooking events within the same vessel. To assess this, we cooked seven mixtures of C3 and C4 foodstuffs in unglazed pots once per week for one year, then changed recipes between pots for the final cooking events. We conducted bulk stable-isotope analysis and lipid residue analysis on the charred food macro-remains, carbonized thin layer organic patina residues and absorbed lipids over the course of the experiment. Our results indicate that: (1) the composition of charred macro-remains represent the final foodstuffs cooked within vessels, (2) thin-layer patina residues represent a mixture of previous cooking events with bias towards the final product(s) cooked in the pot, and (3) absorbed lipid residues are developed over a number of cooking events and are replaced slowly over time, with little evidence of the final recipe ingredients

    Assessing the trophic ecology of three sympatric squid in the marine ecosystem off the Patagonian Shelf by combining stomach content and stable isotopic analyses

    Get PDF
    Squid species are important components of the Southern Atlantic Ocean ecosystems, as they prey on a wide range of crustaceans, fish and cephalopods. As a result of this trophic interaction and their high abundance, they are considered reliable indicators of energy transfer and biomass in the food web. We identified Illex argentinus, Doryteuthis gahi and Onykia ingens as the most important squid species interacting on the Patagonian shelf, and used isotope analysis and stomach content identification to assess the feeding ecology and interaction of these squids in the ecosystem. Our results describe trophic interactions by direct predation of O. ingens and I. argentinus on D. gahi, and a trophic overlap of the three squid, and indicate a higher trophic level and differences in the foraging areas for mature and maturing D. gahi inferred through δ15N and δ13C concentrations. These differences were related to the segregation and different habitat of large mature D. gahi and suggest a food enrichment of C and N based on feeding sources other than those used by small maturing D. gahi and I. argentinus and O. ingens.Versión del editor1,484

    Turnover rates of nitrogen stable isotopes in the salt marsh mummichog, Fundulus heteroclitus, following a laboratory diet switch

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Springer-Verlag GmbH for personal use, not for redistribution. The definitive version was published in Oecologia 147 (2006): 391-395, doi:10.1007/s00442-005-0277-z.Nitrogen stable isotopes are frequently used in ecological studies to estimate trophic position and determine movement patterns. Knowledge of tissue-specific turnover and nitrogen discrimination for the study organisms is important for accurate interpretation of isotopic data. We measured δ15 N turnover in liver and muscle tissue in juvenile mummichogs, Fundulus heteroclitus, following a laboratory diet switch. Liver tissue turned over significantly faster than muscle tissue suggesting the potential for a multiple tissue stable isotope approach to study movement and trophic position over different time scales; metabolism contributed significantly to isotopic turnover for both liver and muscle. Nitrogen diet-tissue discrimination was estimated at between 0.0 and 1.2‰ for liver and –1.0 and 0.2‰ for muscle. This is the first experiment to demonstrate a significant variation in δ15 N turnover between liver and muscle tissues in a fish species.This study was funded by NSF LTER grant OCE-9726921

    Isotope Analysis Reveals Foraging Area Dichotomy for Atlantic Leatherback Turtles

    Get PDF
    Background: The leatherback turtle (Dermochelys coriacea) has undergone a dramatic decline over the last 25 years, and this is believed to be primarily the result of mortality associated with fisheries bycatch followed by egg and nesting female harvest. Atlantic leatherback turtles undertake long migrations across ocean basins from subtropical and tropical nesting beaches to productive frontal areas. Migration between two nesting seasons can last 2 or 3 years, a time period termed the remigration interval (RI). Recent satellite transmitter data revealed that Atlantic leatherbacks follow two major dispersion patterns after nesting season, through the North Gulf Stream area or more eastward across the North Equatorial Current. However, information on the whole RI is lacking, precluding the accurate identification of feeding areas where conservation measures may need to be applied. Methodology/Principal Findings: Using stable isotopes as dietary tracers we determined the characteristics of feeding grounds of leatherback females nesting in French Guiana. During migration, 3-year RI females differed from 2-year RI females in their isotope values, implying differences in their choice of feeding habitats (offshore vs. more coastal) and foraging latitude (North Atlantic vs. West African coasts, respectively). Egg-yolk and blood isotope values are correlated in nesting females, indicating that egg analysis is a useful tool for assessing isotope values in these turtles, including adults when not available. Conclusions/Significance: Our results complement previous data on turtle movements during the first year following the nesting season, integrating the diet consumed during the year before nesting. We suggest that the French Guiana leatherback population segregates into two distinct isotopic groupings, and highlight the urgent need to determine the feeding habitats of the turtle in the Atlantic in order to protect this species from incidental take by commercial fisheries. Our results also emphasize the use of eggs, a less-invasive sampling material than blood, to assess isotopic data and feeding habits for adult female leatherbacks

    Estimating the Diets of Animals Using Stable Isotopes and a Comprehensive Bayesian Mixing Model

    Get PDF
    Using stable isotope mixing models (SIMMs) as a tool to investigate the foraging ecology of animals is gaining popularity among researchers. As a result, statistical methods are rapidly evolving and numerous models have been produced to estimate the diets of animals—each with their benefits and their limitations. Deciding which SIMM to use is contingent on factors such as the consumer of interest, its food sources, sample size, the familiarity a user has with a particular framework for statistical analysis, or the level of inference the researcher desires to make (e.g., population- or individual-level). In this paper, we provide a review of commonly used SIMM models and describe a comprehensive SIMM that includes all features commonly used in SIMM analysis and two new features. We used data collected in Yosemite National Park to demonstrate IsotopeR's ability to estimate dietary parameters. We then examined the importance of each feature in the model and compared our results to inferences from commonly used SIMMs. IsotopeR's user interface (in R) will provide researchers a user-friendly tool for SIMM analysis. The model is also applicable for use in paleontology, archaeology, and forensic studies as well as estimating pollution inputs
    corecore