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ORIGINAL ARTICLE

Assessing the trophic ecology of three sympatric squid in the marine ecosystem
off the Patagonian Shelf by combining stomach content and stable isotopic
analyses
Rigoberto Rosas-Luisa, Joan Navarrob, Pilar Sánchezc and José L. Del Ríod

aDepartamento Central de Investigación, Universidad Laica “Eloy Alfaro” de Manabí, Manta, Manabí, Ecuador; bDepartment of Conservation
Biology, Estación Biológica de Doñana-CSIC, Sevilla, Spain; cInstitut de Ciències del Mar-CSIC, Barcelona, Spain; dCentro Oceanográfico Vigo,
Instituto Español de Oceanografía, Vigo, Spain

ABSTRACT
Squid species are important components of the Southern Atlantic Ocean ecosystems, as they
prey on a wide range of crustaceans, fish and cephalopods. As a result of this trophic
interaction and their high abundance, they are considered reliable indicators of energy
transfer and biomass in the food web. We identified Illex argentinus, Doryteuthis gahi and
Onykia ingens as the most important squid species interacting on the Patagonian shelf, and
used isotope analysis and stomach content identification to assess the feeding ecology and
interaction of these squids in the ecosystem. Our results describe trophic interactions by
direct predation of O. ingens and I. argentinus on D. gahi, and a trophic overlap of the three
squid, and indicate a higher trophic level and differences in the foraging areas for mature
and maturing D. gahi inferred through δ15N and δ13C concentrations. These differences were
related to the segregation and different habitat of large mature D. gahi and suggest a food
enrichment of C and N based on feeding sources other than those used by small maturing
D. gahi and I. argentinus and O. ingens.
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Introduction

Squid are important components of marine ecosys-
tems (Coll et al. 2013) and their populations are exten-
sively exploited by fisheries (Rodhouse & Nigmatullin
1996; Agnew et al. 2005; Portela et al. 2010; Rosas-
Luis et al. 2014). The ommastrephid Illex argentinus
(Castellanos, 1960), the loliginid Doryteuthis gahi
(d’Orbigny, 1835) and the onychoteuthid Onykia
ingens (E. A. Smith, 1881) are three squid species that
coexist in the same oceanic areas, competing for avail-
able food resources. Similar to other squid, these
species are short-lived terminal spawners (lifespan of
1–2 years) that exhibit high metabolic and growth
rates, and feed voraciously on a wide range of prey
(Rodhouse & Nigmatullin 1996; Rosas-Luis et al. 2014).
In the Southern Ocean and off central and southern
Patagonia, these three squid species are active preda-
tors of crustaceans, fish and molluscs (Rosas-Luis
et al. 2014). Small squid feed exclusively on crus-
taceans; medium-sized individuals of I. argentinus and
O. ingens feed on fish, molluscs and crustaceans; and
larger squid feed on cephalopods and fish (Phillips
et al. 2001, 2003a; Jackson et al. 1998; Cherel &

Duhamel 2003; Rosas-Luis et al. 2014). Doryteuthis
gahi and I. argentinus are abundant species in the Pata-
gonian Shelf ecosystem and are important prey of
marine mammals, sea birds, pelagic fish and other
squid (Ivanovic & Brunetti 1994; Cherel & Weimerskirch
1999; Mouat et al. 2001). The Patagonian Shelf is influ-
enced by two currents: a northward flow of cold waters
in the south – the Falklands/Malvinas Current (FC) –
and the presence of warm-water eddies formed at
the Brazil/Falkland/Malvinas Confluence (BFC) at
around 38°S, causing high hydrographic mesoscale
variability reflected in high primary production and a
suitable area for squid (Palma et al. 2008).

Morphologically, mature individuals of the three
species differ in body size, with D. gahi being the smal-
lest (17 cm maximum mantle length), followed by
I. argentinus (40 cm) and then O. ingens (50 cm)
(Jackson et al. 1998; Phillips et al. 2003b; Crespi-Abril
et al. 2009; Rodhouse et al. 2013; Rosas-Luis et al.
2014). The oceanic movements of I. argentinus and
O. ingens are quite similar to other squid, migrating
from the surface to deeper waters close to 500 m
during the day (Moiseev 1991; Brunetti & Ivanovic
1992; Gilly et al. 2006; Watanabe et al. 2006). For
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D. gahi, this vertical migration differs between adults
and juvenile individuals; adult individuals are distribu-
ted near the surface, while juveniles and maturing
adults perform diel vertical migrations to deep waters
(Arkhipkin et al. 2013).

Rosas-Luis et al. (2014) described the trophic inter-
actions between D. gahi, I. argentinus and O. ingens
using traditional stomach content analyses for the
central part of the Patagonian Shelf (the same fishing
area in this study), a methodology that reflects the
diet on a short-term scale (hours to a few days) in a par-
ticular place (Hyslop 1980). Stable isotopes of nitrogen
(denoted as δ15N) and carbon (denoted as δ13C) have
been increasingly used as an alternative and comp-
lementary tool to study the feeding behaviour of pre-
dators, including squid (McCutchan et al. 2003; Cherel
& Hobson 2005; Navarro et al. 2013). δ15N values are
indicators of a consumer’s trophic position as the con-
sumer’s tissues become enriched in δ15N relative to
their food (McCutchan et al. 2003; Vanderklift &
Ponsard 2003). Variation in δ15N values in consumers
may result not only from the trophic level at which
they feed (Cherel et al. 2008), but also from changes
at the base of the food web (Hobson & Cherel 2006);
nevertheless latitudinal variation of δ15N is relatively
low in oceanic waters of the Southern Ocean, and sea-
sonal variation is integrated and buffered throughout
the food web, from short-lived phytoplankton to
long-lived predators (Cherel et al. 2008). δ13C values
are mainly used to determine primary sources in a
trophic network (McCutchan et al. 2003). In marine
environments, δ13C values indicate the inshore/
pelagic versus offshore/benthic contribution to food
intake (Hobson et al. 1994; Cherel & Hobson 2007;
Navarro et al. 2013). In the giant squid Architeuthis
dux Steenstrup, 1857, the more positive δ13C values
indicate the use of waters to the north of the subtropi-
cal front to the Kerguelen waters in Southern Oceans
(Cherel & Hobson, 2005), and for O. ingens, δ13C
values suggest that this species lives essentially in the
same water mass throughout its life (Cherel &

Hobson 2005). The combination of both stomach con-
tents and isotopic analyses results in a better under-
standing of the feeding ecology and ecological role
of marine organisms (see examples in Ruiz-Cooley
et al. 2006; Connan et al. 2014; Navarro et al. 2014;
Albo-Puigserver et al. 2015).

Considering their ecological importance as prey and
predators in the ecosystem of the Patagonian Shelf, we
analysed the feeding ecology (diet and trophic pos-
ition) and trophic relationships between D. gahi,
I. argentinus and O. ingens. Our analyses include the
use of isotopic methodology corroborated with tra-
ditional stomach content analysis.

Materials and methods

Study area and sampling procedures

All specimens were captured by two commercial
Spanish bottom-trawling vessels (C/V Figaro and C/V
Manuel Ángel Nores) over the Patagonian Shelf
between 6 and 8 May 2013 at depths between 111
and 285 m using a four-panel trawl of 64.40 ×
84.85 m (Table I, Figure 1). Stomach content and
stable isotope analyses were carried out on Doryteuthis
gahi, Illex argentinus and Onykia ingens. Each specimen
was immediately frozen on board after capture and
stored at −20°C until their morphological, stomach
content and tissue isotopic analyses were conducted.
Mantle length (ML) and body weight (BW) were
recorded for all individuals as well as sex and maturity
stage in three groups: immature, maturing and mature,
according to Lipinski & Underhill (1995).

Stomach content analysis

The stomachs of all individuals were extracted after dis-
section. Each stomach was weighed with a digital
balance to determine the stomach content weight
(SCW) and fullness weight index FWI = (SCW×100) /

Table I. Summary data of squid species and potential prey sampled over the Patagonian Shelf. Myctophids, amphipods and
Euphausia superba values were taken from Wada et al. (1987), Dunton (2001), Cherel et al. (2002) and Corbiser et al. (2004).
Species Depth (m) ML (cm) Sex (female, male) Total δ13C (mean ± SD) δ15N (mean ± SD) Trophic level

Doryteuthis gahi (d’Orbigny, 1835) (maturing) 285 8.9–10 8, 2 10 −18.48 ± 0.18 13.18 ± 0.80 5.05
Doryteuthis gahi (d’Orbigny, 1835) (mature) 285 23.5–27.5 10, 0 10 −17.12 ± 0.21 12.69 ± 0.52 4.93
Illex argentinus (Castellanos, 1960) 111–261 23.7–35.1 10, 10 20 −18.92 ± 0.47 11.98 ± 0.97 4.68
Onykia ingens (E. A. Smith, 1881) 168–285 24.9–37.1 13, 8 21 −18.59 ± 0.76 11.48 ± 1.19 4.52
Munida gregaria (Fabricius, 1793) 5 −18.01 ± 0.16 11.83 ± 0.75 4.63
Patagonotothen sp. 5 −18.96 ± 0.93 12.39 ± 1.02 4.8
Micromesistius australis Norman, 1937 1 −18.47 11.66 4.58
Amphipods −23.1 5.6 2.68
Myctophids −21.8 8.4 3.52
Euphausia superba Dana, 1850 −28.78 ± 1.37 3.15 ± 0.60 1.92

ML = mantle length, SD = standard deviation.
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(BW−SCW), following Rasero et al. (1996), where BW is
the body weight.

Stomach contents were identified under a binocular
microscope (60–120×) to aid identification and all prey
items were weighed to the nearest 0.01 g. Fish sagittal
otoliths were identified using the parameters provided
by Smale et al. (1995) and Lombarte et al. (2006). Cepha-
lopod beaks were identified following Clarke (1986) and
Xavier & Cherel (2009). Crustaceans were identified by
their exoskeletons based on by Stebbing (1888) and
Boschi et al. (1992).

Although the number of stomachs was low, we calcu-
lated the trophic indices to make comparisons with the
results obtained with the isotopic mixing models and
with the diet information reported in previous diet
studies. Frequency of occurrence and numeric and

gravimetric methods were used to quantify the diet. Fre-
quency of occurrence (%FO) was calculated as the per-
centage of squid that fed on a certain prey %FO = (ni/
N )*100, where n is the number of stomachs with prey i,
and N is the total number of stomachs containing prey.
The numeric method (%N) is the number of individuals
of a certain prey (pi) relative to the total number of indi-
vidual prey (P) as follows: %N= (pi /P)*100. The gravi-
metric method (%W) is defined as the weight of a
certain prey (wi ) relative to the total weight of all prey
(W ), as follows: %W= (wi /W )*100, (Cailliet 1976). The
indexof relative importance (IRI)was calculated following
Pinkas et al. (1971): IRI = (%N +%W)*(%FO). The IRI was
expressed as: %IRI = (IRI/ΣIRI)*100, and compared with
those previously reported by Rosas-Luis et al. (2014) for
the same area and same species.

Figure 1. Southwestern Atlantic Ocean and sampling locations (black stars) of Doryteuthis gahi, Illex argentinus and Onykia ingens.
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Stable isotopic analysis

A small portion of mantle was extracted from each indi-
vidual. All samples were freeze-dried and powdered,
and 0.270–0.300 mg of each sample was packed into
tin capsules. Isotopic analyses were performed at the
Laboratory of Stable Isotopes at the Estación Biológica
deDoñana. Sampleswere heated to 1020°C using a con-
tinuous flow isotope-ratio mass spectrometer (Thermo
Electron) bymeans of a FlashHT Plus elemental analyser
interfacedwith a Delta V Advantagemass spectrometer.
Stable isotope ratios were expressed in the standard δ-
notation (‰) relative to Vienna Pee Dee Belemnite
(δ13C) and atmospheric N2 (δ

15N). Based on laboratory
standards, the measurement error was ± 0.1 and ± 0.2
for δ13C and δ15N, respectively. The C:N ratio of all
tissueswas always lower than 3‰, and hence no correc-
tion of the δ13C values was required to account for the
presence of lipids (Logan et al. 2006). To compare the
isotope results, four groups of squid were defined: one
for immature Doryteuthis gahi, one for mature D. gahi,
one for Illex argentinus, and one for Onykia ingens
(Table I). ANOVA and post-hoc Tukey tests were used
when comparing isotope values between groups.

Trophic level

The trophic level position of each squid andprey species
was calculated according to Cherel et al. (2008) and
Braid & Bolstad (2014), using the following equation:

TL = [(d15Nsquid or prey − 3.4)− 3.2−1]+ 2,

where TL is the trophic level of that consumer, δ15Nsquid

or prey represents the values of the consumer’s muscle
tissue; 3.4 is the mean δ15N for Salpa thompsoni
Foxton, 1961 (in ‰) with a trophic level of 2 according
to Perissinotto & Pakhomov (1998), and 3.2 is the
average trophic enrichment factor (Sweeting et al.
2007). δ15N values of the squat lobster Munida gregaria
(Fabricius, 1793) (n = 5 samples), the longtail southern
cod Patagonotothen ramsayi (Regan, 1913) (n = 5) and
the southern blue whiting Micromesistius australis
Norman, 1937 (n = 1), were calculated based on
samples collected with the same trawl net and at the
same time as the squid. The δ15N values of Euphausia
superba Dana, 1850, amphipods and myctophids were
taken from previous studies (Wada et al. 1987; Dunton
2001; Cherel et al. 2002; Corbiser et al. 2004).

Isotopic mixing model

To evaluate the relative contributions of the different
food sources, based on δ13C and δ15N isotopic

signatures of the four groups of squid (maturing and
mature Doryteuthis gahi, Illex argentinus and Onykia
ingens), a Bayesian stable isotope mixing model was
implemented in the software package SIAR (Stable
Isotope Analysis in R) (Parnell et al. 2010). The model
considers a transfer energy factor of 3.4 ± 1 for δ15N,
and 0.4 ± 1.3 for δ13C, which allows the inclusion of iso-
topic signatures and fractionation together with the
uncertainty of these values within the model. We
used the same isotopic enrichment values used to cal-
culate the trophic level. Isotope niche metrics (Bayesian
ellipse area) and trophic overlap between species were
also calculated using the SIAR package (Jackson et al.
2011). These analyses use measurements based on
ellipses calculated by a covariance matrix that defines
their shape and area, and values close to 1 represent
high trophic overlap (Jackson et al. 2011). The ellipse
area was proposed as an unbiased metric with
respect to sample size and, particularly for the Bayesian
method, which incorporates greater uncertainty with
smaller sample sizes, resulting in larger ellipse areas
(Jackson et al. 2011). Both methods were fitted using
R 3.1.0 for Windows (R Development Core Team
2014). Three potential prey groups were selected for
the isotopic mixing models based on the feeding
habits reported in this study and those of Rosas-Luis
et al. (2014): crustaceans (Euphausia superba, amphi-
pods and Munida gregaria), fish (Patagonotothen sp.,
myctophids and Micromesistius australis), and squid
(Doryteuthis gahi, Illex argentinus); Onykia ingens was
not considered as a prey group as it was not identified
in the stomach contents of the three squid (Table I).

Results

Stomach content results

Ten muscle samples of maturing and 10 mature Dory-
teuthis gahi, 20 of Illex argentinus and 21 of Onykia
ingens were used in the isotopic analysis. All the
stomachs were analysed for the identification of prey,
except for O. ingens for which only 17 stomachs con-
tained food items.

Maturing Doryteuthis gahi fed on crustaceans,
Euphausia sp. and Themisto gaudichaudii Guérin,
1825, while mature D. gahi fed on fish and the squat
lobster Munida gregaria (Table II). In contrast, the diet
of Illex argentinus was composed of fish, with Arctoze-
nus risso (Bonaparte, 1840) and Patagonotothen
ramsayi (Regan, 1913) being the most important, and
crustaceans, with T. gaudichaudii being the most
important (Table III). Illex argentinus also included the
squid D. gahi and I. argentinus in their diet.
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Similar to I. argentinus, the diet of O. ingens was
mainly composed of fish, with Lampanyctus australis
Tåning, 1932, Notoscopelus sp., Micromesistius australis
and Notophycis marginata (Günther, 1878) being the
most important, followed by squid, with Histioteuthis
sp., Histioteuthis atlantica (Hoyle, 1885) and D. gahi
identified in the stomach contents (Table III).

Isotopic results and SIAR outputs

The analysis of variance (ANOVA test) of δ13C values
yielded significant differences between the three
squid (F1,59=48.18, P < 0.05). A post-hoc Tukey test
showed that maturing Doryteuthis gahi, mature
D. gahi and Illex argentinus differed significantly
at P < 0.05 (Table I and IV), and that mature D. gahi
and Onykia ingens differed significantly at P < 0.05
(Table I and IV). δ15N values also differed between
the three squid (F1,38 = 8.26, P < 0.05).

Regarding the standard elliptic areas (SEA)
(Figure 2), we found that O. ingens showed the
highest values (SEA = 1.44), followed by I. argentinus
(SEA = 1.30), maturing D. gahi (SEA = 0.52) and mature
D. gahi (SEA = 0.39). We also found an overlap
between the SEA of O. ingens, I. argentinus and matur-
ing D. gahi (Figure 2). The highest SEA overlap was
found between O. ingens and I. argentinus (SEA
overlap= 0.52), followed by I. argentinus and maturing
D. gahi (SEA overlap = 0.12), and maturing D. gahi
and O. ingens (SEA overlap = 0.05). In contrast, the
SEA of mature D. gahi was segregated from the other
groups (Figure 2B).

Regarding trophic level based on δ15N values, we
found that D. gahi showed the highest trophic level
(TL = 5.05), followed by I. argentinus (TL = 4.68) and
O. ingens (TL = 4.52). Munida gregaria (δ15N = 11.83 ±
0.75, TL = 4.63), Patagonotothen sp. (δ15N = 12.39 ±
1.02, TL = 4.80) and Merluccius australis (Hutton, 1872)

(δ15N = 11.66, TL = 4.58) were at similar trophic levels
to I. argentinus and O. ingens. Euphausia superba
(δ15N = 3.15 ± 0.60, TL = 1.92) showed the lowest
trophic level (Table I).

SIAR results indicated that fish and squid were the
main prey groups for the three squid species studied
(Figure 3), with the proportion of fish higher than crus-
taceans for maturing D. gahi individuals.

Discussion

We found that the squid Doryteuthis gahi, Illex argenti-
nus and Onykia ingens on the Patagonian Shelf exploit
similar feeding resources (fish, crustaceans and squid)
as indicated by previous results (Ivanovic & Brunetti
1994; Santos & Haimovici 1997; Jackson et al. 1998;
Mouat et al. 2001; Phillips et al. 2001, 2003a, 2003b;
Arkhipkin & Middleton 2002; Cherel & Duhamel 2003;
Ivanovic 2010; Rosas-Luis et al. 2014). Previous reports
were based on traditional stomach content analysis
of squid caught by trawl nets, which appear to be
reliable indicators of the feeding habits of these
squid. The method of capture of these squid (trawling
in the present study and jig-caught for other studies)
may lead to a misinterpretation of feeding components
because the squid can actively feed on prey also
present in the fishing net (Ibañez et al. 2008).
However, in order to reduce the identification bias
and fish consumed inside the trawl net, we used hard
structures, such as fish otoliths and cephalopod beaks
that remain after a lengthy period of digestion. Consid-
ering that all studies reported a similar feeding compo-
sition of the dietary habits of these three species, we
incorporated the isotope analysis to explain the
trophic ecology based on the δ13C and δ15N values
of the three squid. For this reason, the stomach
content results were only used to confirm the feeding
component with previous reports (Rosas-Luis et al.

Table II. Percentages of the number N, weight W, frequency of occurrence FO, and the index of relative importance IRI of the
feeding resources for 10 maturing and 10 mature Doryteuthis gahi. UN is unidentified.

D. gahi maturing D. gahi mature

Prey %N %W %FO %IRI %N %W %FO %IRI

Chordata
Actinopterygii UN 6.25 0.05 10.00 0.41 42.90 60.70 30.00 67.72

Crustacea 93.75 99.94 80.00 99.59 28.60 37.60 20.00 28.84
Decapoda
Amphipoda
Themisto gaudichaudi Guérin, 1825 43.75 0.53 29.86 28.27
Unidentified 6.25 5.29 10.00 1.47

Euphausiacea
Euphausia sp. 43.75 64.79 50.00 69.45

Munididae
Munida gregaria (Fabricius, 1793) 28.60 37.60 20.00 27.96

Teuthida UN 14.30 1.53 10.00 3.34
Cnidaria (Cubozoa) 14.30 0.13 10.00 3.05

MARINE BIOLOGY RESEARCH 5

D
ow

nl
oa

de
d 

by
 [

83
.4

7.
11

7.
22

7]
 a

t 0
7:

19
 2

7 
A

pr
il 

20
16

 



2014). The combination of the two methodologies,
stomach content and isotopic values, provides new
ways of quantifying the trophic ecology and relation-
ships between squid, which we present in this study.

An evident segregation in the δ13C values between
mature D. gahi and the other squid was found, prob-
ably reflecting the different use of benthic/inshore vs
pelagic/offshore waters between them (Hobson &

Welch 1992). Mature D. gahi showed high δ13C
values, indicating its pelagic, shallow and neritic
feeding habits, and confirmed the inshore spawning
migration of mature D. gahi (Hobson et al. 1994;
Arkhipkin et al. 2004, 2013; Cherel & Hobson 2007).
On the other hand, maturing D. gahi, I. argentinus
and O. ingens showed more negative δ13C values that
are coincident with the active vertical migrations in
oceanic and deep waters of maturing D. gahi and
I. argentinus (Arkhipkin et al. 2013), and with
O. ingens which lives and feeds primarily in deep
waters (Cherel & Hobson 2005). The enrichment of
δ13C values related to different foraging areas of
mature D. gahi is similar to those reported by Cherel
et al. (2008) in the southern ocean where the elephant
seal feeds in open oceanic waters (low δ13C values) and
the gentoo penguin Pygoscelis papua (Forster, 1781)
feeds in neritic waters (high δ13C values). Nonetheless,
the δ13C value for mature D. gahi is enforced with the
inclusion of the squat lobster Munida gregaria (TL =
4.63) as their main prey item. The maturity stage of
M. gregaria was not identified in our samples but

Table III. Percentages of the number N, weight W, frequency of occurrence FO, and the index of relative importance IRI of the
feeding resources for 20 Illex argentinus and 17 Onykia ingens. UN is unidentified.

I. argentinus O. ingens

Prey %N %W %FO %IRI %N %W %FO %IRI

Chordata
Actinopterygii 26.31 34.86 75.00 55.45 63.82 82.70 58.82 81.27
Gadididae

Micromesistius australis Norman, 1937 4.25 0.96 5.88 1.36
Paralepididae
Arctozenus risso (Bonaparte, 1840) 1.75 1.44 5.00 0.27

Mycthophidae
Lampanyctus australis Tåning, 1932 40.43 24.51 5.88 16.98
Notophycis marginata (Günther, 1878) 4.25 1.27 5.88 1.44
Notoscopelus sp. 2.13 46.32 5.88 12.67
Unidentified 1.75 3.96 5.00 0.49

Notothenidae
Patagonotothen ramsayi (Regan, 1913) 1.75 4.48 5.00 0.53

Actinopterygii UN 21.05 24.98 60.00 47.20 12.76 9.63 35.29 35.13
Crustacea 66.66 24.28 30.00 32.97 12.76 8.77 35.29 7.16

Amphipoda
Themisto gaudichaudi Guérin, 1825 64.91 24.28 30.00 45.73
Amphipoda UN 2.13 0.33 5.88 0.64

Euphausiacea
Euphausia sp. 1.75 0.01 5.00 0.15

Munididae
Munida sp. 6.38 0.01 17.64 5.02
Munida gregaria (Fabricius, 1793) 4.26 8.42 11.76 6.63

Mollusca 7.01 40.85 20.00 11.57 21.27 8.49 41.17 11.56
Cephalopoda
Teuthida
Histioteuthidae
Histioteuthis sp. 8.51 1.99 17.65 8.24
Histioteuthis atlantica (Hoyle, 1885) 2.13 0.08 5.88 0.58

Loliginidae
Doryteuthis gahi (d’Orbigny, 1835) 3.51 14.40 10.00 3.06 2.13 0.72 5.88 0.74

Ommastrephidae
Illex argentinus (Castellanos, 1960) 1.75 0.08 5.00 0.16

Teuthida UN 1.75 26.38 5.00 2.40 6.38 5.64 17.65 9.43
Cephalopoda UN 2.13 0.06 5.88 0.57

Phaeophyta 2.13 0.03 5.88 0.56

Table IV. Results of the post-hoc Tukey test of Doryteuthis gahi,
Illex argentinus and Onykia ingens.

Group Group
δ15N

(P-value)
δ13C

(P-value)

D. gahi (d’Orbigny, 1835) maturing I. argentinus <0.05 <0.05
O. ingens 0.62 <0.05
D. gahi mature <0.05 0.80

D. gahi (d’Orbigny, 1835)
mature

D. gahi maturing <0.05 0.80
I. argentinus <0.05 0.17
O. ingens <0.05 <0.05

Illex argentinus (Castellanos, 1960) D. gahi maturing <0.05 <0.05
O. ingens 0.20 0.35
D. gahi mature <0.05 0.17

Onykia ingens (E. A. Smith, 1881) D. gahi maturing 0.62 <0.05
I. argentinus 0.20 0.35
D. gahi mature <0.05 <0.05
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juveniles of this species are known to be pelagic,
forming dense aggregations in shallow waters (Ravilli
et al. 2010) where they are available to be preyed
upon by mature D. gahi. This result suggests that
mature D. gahi are moving in and out of the distri-
bution area of maturing D. gahi, a result that is corrobo-
rated by the period in which the samples were
collected. Samples were collected in May, which
coincides with the start of one of the two reproductive
periods of D. gahi (May to July) when both mature and
maturing groups are interacting in the same area
(Arkhipkin et al. 2004, 2013).

δ15N values indicated that these three squid are
placed at high trophic levels (TL= 4.5 to 5). These
results agree with the known trophic web of squid
based on fish, squid and large crustaceans (Ivanovic &
Brunetti 1994; Santos & Haimovici 1997; Jackson et al.
1998; Mouat et al. 2001; Phillips et al. 2001, 2003a,
2003b; Arkhipkin & Middleton 2002; Cherel & Duhamel
2003; Ivanovic 2010; Rosas-Luis et al. 2014) and with
the assumption that the highest δ15N values are
related to the trophic level of prey and the ontogenetic
growth of predators (DeNiro & Epstein 1981; Vanderklift
& Ponsard 2003; Newsome et al. 2009; Navarro et al.
2011) resulting in a reliable description of the feeding
activity of mature D. gahi, I. argentinus and O. ingens
(Hatfield & Rodhouse 1994). Trophic levels of mature
D. gahi, I. argentinus and O. ingens were determined
from the consumption of food sources with a trophic
level of 1.9 to 4.8 (euphausiids, myctophids, other fish
and squid) (Rosas-Luis et al. 2014), but contrasted with
the average δ15N values of maturing D. gahi that
resulted in the highest trophic level (trophic level =
5.05), with euphausids and amphipods as main prey
items according to the stomach content analysis. The
difference in the TL of maturing and mature D. gahi is

related to the incorporation of prey such as
M. gregaria with higher trophic levels of 4.6 in the
feeding habits of mature D. gahi, and unidentified fish
for maturing D. gahi (estimated prey contribution iso-
topes). Currently, stomach content and isotope analyses
do not show the same results for maturingD. gahi. Thus,
we suggest that the δ15N values of maturing D. gahi are
affected by vertical movements of the feeding groups
between 0 and 150 m depths, and horizontal move-
ments in and offshore, promoting predation on prey
other than those reported for I. argentinus and
O. ingens (Ivanovic & Brunetti 1994; Phillips et al. 2001;
Cherel & Duhamel 2003; Phillips et al. 2003a, 2003b).
Unfortunately, there was a high number of unidentified
fish in the stomach contents of D. gahi in this work and
that previously reported by Rosas-Luis et al. (2014),
suggesting that the stomach content identification in
D. gahidoes not reflect the δ15N enrichment inmuscular
tissue based on fish (Newsome et al. 2009), and that
maturingD. gahi do not regularly consume crustaceans.
Thus, systematic and molecular methods should be
used to complete the description of the annual cycle
of the feeding habits of this squid.

Finally, our results indicate that the use of comp-
lementary methodologies provides important infor-
mation for a more thorough understanding of the
trophic ecology of D. gahi, I. argentinus and O. ingens.
Although isotopes do not typically reveal detailed
information on dietary composition, the use of both
methods offers a proxy for dietary variation between
maturing and mature D. gahi, and between mature
D. gahi, I. argentinus and O. ingens. These dietary pat-
terns are characterized by an inshore-offshore onto-
genetic migration of D. gahi inhabiting different areas
and preying on feeding resources that are different
from those of I. argentinus and O. ingens.

Figure 2. (A) Mean ± standard deviation of δ15N and δ13C values in muscle of Doryteuthis gahi, Illex argentinus and Onykia ingens;
(B) isotopic standard ellipses of each squid species.
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