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Abstract Nitrogen stable isotopes are frequently used in ecological studies to 

estimate trophic position and determine movement patterns.  Knowledge of tissue-

specific turnover and nitrogen discrimination for study organisms is important for 

accurate interpretation of isotopic data.  We measured δ15N turnover in liver and muscle 

tissue in juvenile mummichogs, Fundulus heteroclitus, following a laboratory diet 

switch.  Liver tissue turned over significantly faster than muscle tissue suggesting the 

potential for a multiple tissue stable isotope approach to study movement and trophic 

position over different time scales; metabolism contributed significantly to isotopic 

turnover for both liver and muscle.  Nitrogen diet-tissue discrimination was estimated at 

between 0.0 – 1.2 ‰ for liver and –1.0 – 0.2 ‰ for muscle.  This is the first experiment 

to demonstrate a significant variation in δ15N turnover between liver and muscle tissue in 

a fish species. 
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Introduction  

 Nitrogen stable isotopes provide natural markers that are increasingly used to 

study food webs and movement patterns (Hobson 1999).  The isotopic signatures of 

organisms reflect the stable isotope ratios of their diets offset by a discrimination factor.  

Discrimination represents the difference between isotope values for diet and fully 

equilibrated consumer tissue (Martínez del Rio and Wolf 2004).  Nitrogen, which 

typically discriminates 2 to 4 ‰ (DeNiro and Epstein 1981; Minagawa and Wada 1984; 

Gannes et al. 1998; Post 2002), is often used to determine trophic position (Fry and Sherr 

1984; Peterson and Fry 1987).  Isotopic analysis of multiple tissue types with different 

turnover times can potentially be used to determine diet (Kurle and Worthy 2002) or 

movement patterns (Fry et al. 2003) over a range of time scales by linking isotopic values 

to specific food or habitat types. 

 Among ectothermic organisms, isotopic change is generally attributed to growth 

rather than metabolism.  Most laboratory diet-switch experiments (Hesslein et al. 1993; 

Herzka and Holt 2000; MacAvoy et al. 2001; Bosley et al. 2002; Tominaga et al. 2003) 

and field studies (Vander Zanden et al. 1998; Maruyama et al. 2001) show that growth is 

the primary factor causing stable isotopic change in fish following a diet shift.  One field 

study of larval red drum has found significant metabolic turnover, and the authors suggest 

that differences between larval energetic requirements in the laboratory and in the field 

may account for variation between lab and field results (Herzka et al. 2001).   

In endothermic organisms, isotopic turnover varies significantly among tissues in 

relation to the tissue’s relative metabolic activity; turnover is faster in liver than muscle 

tissue (Tieszen et al. 1983; Hobson and Clark 1992).  While isotopic turnover rates in 
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ectotherms should theoretically also vary according to relative tissue metabolic activity, 

experimental results have not been able to show significant variation amongst tissues in 

ectotherms (Hesslein et al. 1993; Johnson et al. 2002).   

This study uses the salt marsh mummichog, Fundulus heteroclitus, to examine 

turnover rates of nitrogen stable isotopes in liver and muscle.  The salt marsh 

mummichog is an ecologically-important, estuarine species, which is abundant along the 

east coast of North America (Robins and Ray 1986).  Stable isotopes have been used to 

determine the placement of mummichogs in food webs (Deegan and Garritt 1997) and 

estimate habitat use (Currin et al. 2003).  Knowledge of species-specific and tissue-

specific turnover and nitrogen discrimination is important for accurate interpretation of 

isotopic data because past studies have demonstrated variation between species (Hesslein 

et al. 1993; Herzka and Holt 2000; MacAvoy et al. 2001; Bosley et al. 2002) and also 

between tissues of the same species (Tieszen et al. 1983; Hobson and Clark 1992).   

In this study, we estimate isotopic turnover rates of nitrogen in individual 

mummichogs that have been switched from a natural diet (baseline δ15N≈ 8 ‰) to a 

laboratory diet of tuna (δ15N≈ 15 ‰).  The growth of each fish was tracked so that the 

total isotopic change could be separated into growth and metabolic turnover, the two 

components that contribute to a change in tissue isotopic values.  Both liver and muscle 

tissues were measured to examine turnover rates in multiple tissues of a single organism.   

Materials and methods 
 
Fish collection and husbandry  

Mummichogs (n = 65) were collected from a single salt marsh creek on the 

Rowley River, Plum Island estuary, Rowley, Massachusetts, USA on May 1, 2003.  In 
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order to maximize growth rates for the experiment, the smallest abundant size class was 

selected (40-51 mm).  After allowing 24 hours for gut clearance, individuals were blotted 

dry, weighed (g ± 0.01), measured (Total length (TL) ± 0.1 mm), and individually (n = 

65) marked via subcutaneous injection of dorsal lateral bands of acrylic paint (Lotrich 

and Meredith 1974) following anesthesia with seltzer water.     

All individuals were transported to the Marine Biological Laboratory (MBL) in 

Woods Hole, Massachusetts, USA on May 2, 2003.  The initial δ15N value of liver and 

muscle was determined by sacrificing five individuals.  The fish were held (n = 20 per 

tank) in three heated (18ºC) 75.8 liter tanks with flow through ambient seawater for up to 

102 days.  Box filters with carbon inserts and daily siphoning of excess food and detritus 

maintained water quality under reduced flow conditions.  Ground frozen tuna was fed 

daily to the mummichogs ad libitum.  To ensure isotopic homogeneity of the food source, 

all of the tuna was homogenized, stored frozen, and thawed in aliquots prior to use.   

Mummichogs (n = 2) were sampled approximately weekly to biweekly initially 

when isotopic change was greatest (6, 13, 19, 23, 27, 38, 46, 56 days after diet switch), 

and a final sample was collected after 102 days to estimate diet-tissue discrimination.  

Fish were placed in a separate tank for 24 hours to allow gut evacuation, then were 

anesthetized, measured (TL ± 0.1 mm), blotted dry, weighed (± 0.01 g), and sacrificed.  

The remaining fish (n = 42) either died in captivity or were sacrificed and archived for 

other studies.     

Isotopic sample preparation 
 

Liver and muscle tissue from 23 mummichogs were analyzed for δ15N.  Whole 

liver and dorsal white muscle were sampled from each fish.  Following sacrifice, liver 
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and muscle tissues were quickly rinsed with deionized water and dried in glass 

scintillation vials at 66ºC for at least 24 hours.  Dried samples were ground to a 

homogeneous powder using a mortar and pestle.  Sub-samples were then weighed to the 

nearest 0.001 mg and packed in tin capsules for isotopic analysis.  Three samples of tuna 

were removed from the homogenized food supply and dried in the same manner as the 

tissue samples.  Two tuna samples were soaked in deionized water for 10 to 15 minutes 

prior to drying to remove dissolved components that might be released from the food 

before consumption.   

Sample analysis 
 
 Isotopic analyses were performed on individual liver and muscle tissue samples at 

the Stable Isotope Laboratory, Marine Biological Laboratory.  Measurement of δ15N was 

performed using a dual-inlet Finnigan MAT Delta S isotope ratio mass spectrometer with 

a Heraeus elemental analyzer - cryogenic "trapping box" preparation system.  Analytical 

precision was ± 0.1 ‰ (http://ecosystems.mbl.edu/SILAB/).  Atmospheric nitrogen gas 

was used as the standard.  Stable isotope ratios are expressed as parts per thousand 

differences from this standard in the following equation (Peterson and Fry 1987): 

δ15N = [(Rsample/Rstandard)-1] x 103, where R is the ratio of heavy and light isotopes 

in a sample, 15N/14N.  

Growth rate and turnover rate estimation 

An equation developed by Fry and Arnold (1982) was fitted to liver and muscle 

isotope data.  The Fry-Arnold equation predicts tissue isotopic signature as a function of 

growth: 

 6



y = a + b*MR
c , where y = δ15N, a = δ15N value in equilibrium with lab diet, b = 

initial δ15N value – δ15N in equilibrium with lab diet, MR = mass ratio = final 

mass/initial mass, and c = curve-fitted turnover rate.   

A c-value of -1 indicates turnover due only to growth (simple dilution) while c-values 

less than -1 represent proportionately greater contributions of metabolic turnover to 

overall isotopic change (Fry and Arnold 1982).   

 Values of c were determined by fitting each equation using iterative, non-linear 

least squares regression.  All equation curve fitting and statistical analyses were 

performed using SYSTAT version 10 (© SPSS Inc. 2000).  Tissue-specific turnover rates 

of δ15N were compared by an overall test for coincidental regressions (Zar 1984).  This F-

test compares the sum of squares error for curve-fitted individual tissue data with sum of 

squares error for combined data.  Curve-fitted c-values with their associated asymptotic 

standard errors were statistically compared using a one-tailed t-test to a c value of -1.  

Specific growth rate (SGR = 100(ln initial mass – ln final mass)/t) where t = time since 

diet switch, and mass ratio (Mf/Mi) were calculated for individual fish. 

Since variation in δ15N for tissues sampled during the latter portion of this 

experiment was minimal, equilibrium with the lab diet was derived from fish collected 

102 days after the diet switch (n=2).  The mean δ15N value of tuna or water soaked tuna 

was subtracted from this 102-day mean for liver or muscle tissues to estimate 

discrimination.  All mean values are presented ± one standard error.  

Results 

 Individual specific growth rates (SGR) ranged from 0.66 to 1.96 % change in 

grams per day (1.28 ± 0.11 % d-1; n = 18).  Starting (pre-diet switch) fish weight was 0.84 
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± 0.03 g (n = 23) with a final weight of 1.75 ± 0.02 g (n = 2) after 102 days (Fig. 1).  

Mass ratio (Mr) varied approximately linearly with time, with a maximum mass ratio of 

2.50 ± 0.09 (n = 2) at 102 days.    

 Metabolic turnover contributed significantly to isotopic change for both liver and 

muscle (P < 0.0001; Fig. 2), and isotopic turnover rates varied significantly between liver 

and muscle tissues (P < 0.0001; Table 1).  The estimated c-values for the Fry-Arnold 

equation were -5.85 ± 0.61 for liver and -2.33 ± 0.25 for muscle.  Both c-values differed 

significantly from -1 (P < 0.0001; Table 1).  

Discrimination estimates were low and varied according to calculated diet δ15N 

values.  Liver (15.6 ± 0.0 ‰; n = 2) and muscle (14.6 ± 0.1 ‰; n = 2) had different 

equilibrium values at the end of the experiment.  Liver (8.8 ± 0.4; n = 5) and muscle (8.2 

± 0.4; n = 5) also differed slightly at the start of the experiment.  Discrimination was 

estimated at 0.0 ‰ for liver and -1.0 ‰ for muscle when estimated final equilibrium 

values were compared to water-soaked tuna (15.6 ± 0.2 ‰) and were higher (1.2 ‰ for 

liver; 0.2 ‰ for muscle) when compared to fresh (not water-leached) tuna (14.4 ± 0.1 

‰).     

Discussion  

 This is the first study to demonstrate a significant variation in isotopic turnover 

between liver and muscle tissues in fish, and one of the few studies to demonstrate a 

significant metabolic contribution to nitrogen isotopic turnover in fish.  The mechanisms 

influencing significant metabolic contribution to δ15N change in liver and muscle tissues 

cannot be determined from this study, but hypotheses regarding protein turnover, 

metabolic rate, and temperature are discussed in the following paragraphs.  
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 Measurements of protein synthesis and turnover in fish indicate variation in 

protein turnover rates between tissues (Jackim and LaRoche 1973; Fauconneau and Arnal 

1985).  If nitrogen isotope turnover and protein turnover are related, observed variation in 

turnover rates between mummichog tissues would match variation observed in other fish 

species.   Protein turnover in rainbow trout, Oncorhynchus mykiss, (Fauconneau and 

Arnal 1985) and mummichogs (Jackim and LaRoche 1973) is significantly higher in liver 

than white muscle tissue.   

 Differences in turnover observed between liver and muscle tissues could partly 

be explained by temperature effects.  Mummichogs used for the current study were 

maintained in warm conditions (≈18ºC) typical of water temperatures encountered in 

their natural environment (Abraham 1985), which could partially explain the high 

metabolic turnover in liver tissue.  A significant increase in liver protein turnover 

efficiency but not muscle protein was observed for rainbow trout raised at 18°C 

compared to 10ºC, indicating a significant increase in protein synthesis for liver at higher 

temperatures (Fauconneau and Arnal 1985).  Elevated temperatures should have similar 

differential tissue turnover effects in other ectothermic species (Millward 1989).  

Previously observed similarity between liver and muscle isotopic turnover rates in broad 

whitefish, Coregonus nasus, (Hesslein et al. 1993) and in lake trout, Salvelinus 

namaycush, (Johnson et al. 2002) could have been related to cold water conditions.  

Juvenile broad whitefish were maintained at 10ºC (Hesslein et al. 1993) while lake trout 

were collected from cold water reservoirs (Johnson et al. 2002), and typically occupy 

colder waters with ideal temperatures near 10ºC (Scarola 1987).   
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The high metabolic contribution to nitrogen isotopic turnover in mummichog 

muscle relative to most other studied fish species is probably not related to temperature 

effects.  Despite a significant increase in liver protein turnover at higher temperatures, 

little variation in whole body or white muscle protein turnover was observed in rainbow 

trout held at 10ºC and 18ºC (Fauconneau and Arnal 1985).  Differences in metabolic 

turnover in whole larval red drum in field and lab conditions also could not be linked to 

variation in temperature (Herzka et al. 2001).        

 Discrimination estimates for δ15N of mummichog liver (0.0 to 1.2 ‰) and muscle 

(-1.0 to 0.2 ‰) tissues were substantially lower than the 3 ‰ enrichment initially 

proposed as a general trophic level discrimination (Minagawa and Wada 1984).  Recent 

meta-analyses of field and lab isotope data indicate a range in δ15N discrimination from 

2.3 ± 0.18 to 3.4 ± 0.13 (Vander Zanden and Rasmussen 2001; Post 2002; McCutchan Jr 

et al. 2003; Vanderklift and Ponsard 2003).  The absolute value of our discrimination 

estimate depends on the estimate of δ15N for the tuna diet (water soaked versus fresh).  

Fish may also not have fully equilibrated with the tuna diet during the time period of this 

experiment, although similar δ15N values for mummichogs maintained under comparable 

conditions but not included in this experiment for 104 and 174 days following a diet 

switch (15.9 ± 0.2 ‰ (n = 4) for liver and 14.7 ± 0.3 ‰ (n = 4) for muscle) further 

suggest complete equilibration (Logan et al. unpublished data).  Despite this uncertainty 

in diet δ15N, these discrimination values fall on the lower end within the range of values 

included in recent meta-analyses.     

Results from this study demonstrate significant differences in turnover rates 

amongst tissue types and significant metabolic contributions to mummichog isotopic 
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turnover.  These results suggest the potential of using multiple tissues to investigate fish 

movement and trophic position over different time scales.  However, determination of 

species and tissue-specific turnover rate estimates are needed.    
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Table 1  Values of c for mummichog (Fundulus heteroclitus) liver and 
muscle tissue.  Iterative non-linear least squares regression best fits for 
the Fry-Arnold model were used to generate c-values.  A c-value of -1 
represents isotopic change due solely to growth.   
Tissue Fry-Arnold Equation c (± SE) df R2

Liver Y = 15.6 – 6.8 * Mr
-5.85 -5.85 ± 0.61 22 0.91 

Muscle Y = 14.6 – 6.4 * Mr
-2.33 -2.33 ± 0.25 22 0.87 
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Fig. 1  Mummichog (Fundulus heteroclitus) growth following diet switch.  Growth is 
represented as mass at time of sacrifice (Mf)       

 
Fig. 2 a,b  δ15N in mummichog A. liver and B.  
muscle relative to growth defined as mass at time  
of sacrifice (Mf) divided by initial mass (Mi).   
Dilution curve (dashed line) represents δ15N  
change resulting only from growth (c = -1) (see  
Methods).  Fry-Arnold curve (solid line)  
incorporates growth and metabolic turnover and  
represents best fit of data.  Tuna diet δ15N =  
15.6 ± 0.2 ‰ (n = 2)   
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