11,561 research outputs found
Cell biology:Collagen secretion explained
Cells package proteins into vesicles for secretion to the extracellular milieu. A study shows that an enzyme modifies the packaging machinery to encapsulate unusually large proteins such as collagen
Rare earth elements (REEs) in the tropical South Atlantic and quantitative deconvolution of their non-conservative behavior
This study presents new concentration measurements of dissolved REEs (dREEs) along a full-depth east-west section across the tropical South Atlantic (~12°S), and uses these data to investigate the oceanic cycling of the REEs. Enrichment of dREEs, associated with the redox cycling of Fe-Mn oxides, is observed in the oxygen minimum zone (OMZ) off the African shelf. For deeper-waters, a multi-parameter mixing model was developed to deconvolve the relative importance of physical transport (i.e. water mass mixing) from biogeochemical controls on the dREE distribution in the deep Atlantic. This approach enables chemical processes involved in REE cycling, not apparent from the measurements alone, to be distinguished and quantified. Results show that the measured dREE concentrations below ~1000 m are dominantly controlled (>75%) by preformed REE concentrations resulting from water mass mixing. This result indicates that the linear correlation between dREEs and dissolved Si observed in Atlantic deep waters results from the dominantly conservative behaviour of these tracers, rather than from similar chemical processes influencing both dREEs and Si. Minor addition of dREEs (~10% of dNd and ~5% of dYb) is observed in the deep (>~4000 m) Brazil Basin, resulting from either remineralization of particles in-situ or along the flow path. Greater addition of dREEs (up to 25% for dNd and 20% for dYb) is found at ~1500 m and below ~4000 m in the Angola Basin near the African continental margin. Cerium anomalies suggest that different sources are responsible for these dREE addition plumes. The 1500 m excess is most likely attributed to dREE release from Fe oxides, whereas the 4000 m excess may be due to remineralization of calcite. Higher particulate fluxes and a more sluggish ocean circulation in the Angola Basin may explain why the dREE excesses in this basin are significantly higher than that observed in the Brazil Basin. Hydrothermal venting over the mid-Atlantic ridge acts as a regional net sink for light REEs, but has little influence on the net budget of heavy REEs. The combination of dense REE measurements with water mass deconvolution is shown to provide quantitative assessment of the relative roles of physical and biogeochemical processes in the oceanic cycling of REEs.X.-Y. Zheng was supported by the Clarendon Scholarship, the Exeter College Mandarin Scholarship from University of Oxford, the Chinese Student Awards from the Great Britain–China Educational Trust (GBCET) and W Wing Yip and Brothers bursaries.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.gca.2016.01.01
Scaling of Anisotropic Flow and Momentum-Space Densities for Light Particles in Intermediate Energy Heavy Ion Collisions
Anisotropic flows ( and ) of light nuclear clusters are studied by
Isospin-Dependent Quantum Molecular Dynamics model for the system of Kr
+ Sn at intermediate energy and large impact parameters.
Number-of-nucleon scaling of the elliptic flow () are demonstrated for the
light fragments up to = 4, and the ratio of shows a constant
value of 1/2. In addition, the momentum-space densities of different clusters
are also surveyed as functions of transverse momentum, in-plane transverse
momentum and azimuth angle relative to the reaction plane. The results can be
essentially described by momentum-space power law. All the above phenomena
indicate that there exists a number-of-nucleon scaling for both anisotropic
flow and momentum-space densities for light clusters, which can be understood
by the coalescence mechanism in nucleonic degree of freedom for the cluster
formation.Comment: 8 pages, 3 figures; to be published in Physics Letters
Properties of charmed and bottom hadrons in nuclear matter: A plausible study
Changes in properties of heavy hadrons with a charm or a bottom quark are
studied in nuclear matter. Effective masses (scalar potentials) for the hadrons
are calculated using quark-meson coupling model. Our results also suggest that
the heavy baryons containing a charm or a bottom quark will form charmed or
bottom hypernuclei, which was first predicted in mid 70's. In addition a
possibility of -nuclear bound (atomic) states is briefly discussed.Comment: Latex, 11 pages, 3 figures, text was expanded substantially, version
to appear in Phys. Lett.
Proton-induced magnetic order in carbon: SQUID measurements
In this work we have studied systematically the changes in the magnetic
behavior of highly oriented pyrolytic graphite (HOPG) samples after proton
irradiation in the MeV energy range. Superconducting quantum interferometer
device (SQUID) results obtained from samples with thousands of localized spots
of micrometer size as well on samples irradiated with a broad beam confirm
previously reported results. Both, the para- and ferromagnetic contributions
depend strongly on the irradiation details. The results indicate that the
magnetic moment at saturation of spots of micrometer size is of the order of
emu.Comment: Invited contribution at ICACS2006 to be published in Nucl. Instr. and
Meth. B. 8 pages and 6 figure
Excluded Volume Effects in the Quark Meson Coupling Model
Excluded volume effects are incorporated in the quark meson coupling model to
take into account in a phenomenological way the hard core repulsion of the
nuclear force. The formalism employed is thermodynamically consistent and does
not violate causality. The effects of the excluded volume on in-medium nucleon
properties and the nuclear matter equation of state are investigated as a
function of the size of the hard core. It is found that in-medium nucleon
properties are not altered significantly by the excluded volume, even for large
hard core radii, and the equation of state becomes stiffer as the size of the
hard core increases.Comment: 14 pages, revtex, 6 figure
Decomposition process in a FeAuPd alloy nanostructured by severe plastic deformation
The decomposition process mechanisms have been investigated in a Fe50Au25Pd25
(at.%) alloy processed by severe plastic deformation. Phases were characterized
by X-ray diffraction and microstructures were observed using transmission
electron microscopy. In the coarse grain alloy homogenized and aged at , the bcc \alpha-Fe and fcc AuPd phases nucleate in the fcc
supersaturated solid solution and grow by a discontinuous precipitation process
resulting in a typical lamellar structure. The grain size of the homogenized
FeAuPd alloy was reduced in a range of 50 to 100nm by high pressure torsion.
Aging at this nanostructure leads to the decomposition
of the solid solution into an equi-axed microstructure. The grain growth is
very limited during aging and the grain size remains under 100nm. The
combination of two phases with different crystallographic structures (bcc
\alpha-Fe and fcc AuPd) and of the nanoscaled grain size gives rise to a
significant hardening of the allo
Levinson's Theorem for Non-local Interactions in Two Dimensions
In the light of the Sturm-Liouville theorem, the Levinson theorem for the
Schr\"{o}dinger equation with both local and non-local cylindrically symmetric
potentials is studied. It is proved that the two-dimensional Levinson theorem
holds for the case with both local and non-local cylindrically symmetric cutoff
potentials, which is not necessarily separable. In addition, the problems
related to the positive-energy bound states and the physically redundant state
are also discussed in this paper.Comment: Latex 11 pages, no figure, submitted to J. Phys. A Email:
[email protected], [email protected]
Massive Neutrinos and the Non-linear Matter Power Spectrum
We perform an extensive suite of N-body simulations of the matter power
spectrum, incorporating massive neutrinos in the range M = 0.15-0.6 eV, probing
the non-linear regime at scales k < 10 hMpc-1 at z < 3. We extend the widely
used HALOFIT approximation to account for the effect of massive neutrinos on
the power spectrum. In the strongly non-linear regime HALOFIT systematically
over-predicts the suppression due to the free-streaming of the neutrinos. The
maximal discrepancy occurs at k ~ 1 hMpc-1, and is at the level of 10% of the
total suppression. Most published constraints on neutrino masses based on
HALOFIT are not affected, as they rely on data probing the matter power
spectrum in the linear or mildly non-linear regime. However, predictions for
future galaxy, Lyman-alpha forest and weak lensing surveys extending to more
non-linear scales will benefit from the improved approximation to the
non-linear matter power spectrum we provide. Our approximation reproduces the
induced neutrino suppression over the targeted scales and redshifts
significantly better. We test its robustness with regard to changing
cosmological parameters and a variety of modelling effects.Comment: 12 pages, 6 figures, version accepted by MNRAS. v2: Minor
clarifications and corrections, citations added. Code available in CAMB and
from http://www.sns.ias.edu/~spb v3: Correct typo in equation A
- …