253 research outputs found

    Blinking fluorescent probes for tubulin nanoscopy in living and fixed cells

    Get PDF
    Here we report a small molecule tubulin probe for single-molecule localization microscopy (SMLM), stimulated emission depletion (STED) microscopy and MINFLUX nanoscopy, which can be used in living and fixed cells. We explored a series of taxane derivatives containing spontaneously blinking far-red dye hydroxymethyl silicon–rhodamine (HMSiR) and found that the linker length profoundly affects the probe permeability and off-targeting in living cells. The best performing probe, HMSiR-tubulin, is composed of cabazitaxel and the 6′-regioisomer of HMSiR bridged by a C6 linker. Microtubule diameter of ≤50 nm was routinely measured in SMLM experiments on living and fixed cells. HMSiR-tubulin allows a complementary use of different nanoscopy techniques for investigating microtubule functions and developing imaging methods. For the first time, we resolved the inner microtubule diameter of 16 ± 5 nm by optical nanoscopy and thereby demonstrated the utility of a self-blinking dye for MINFLUX imaging

    Direct visualization of amlodipine intervention into living cells by means of fluorescence microscopy

    Get PDF
    Amlodipine, a unique long-lasting calcium channel antagonist and antihypertensive drug, has weak fluorescence in aqueous solutions. In the current paper, we show that direct visualization of amlodipine in live cells is possible due to the enhanced emission in cellular environment. We examined the impact of pH, polarity and viscosity of the environment as well as protein binding on the spectral properties of amlodipine in vitro, and used quantum chemical calculations for assessing the mechanism of fluorescence quenching in aqueous solutions. The confocal fluorescence microscopy shows that the drug readily penetrates the plasma membrane and accumulates in the intracellular vesicles. Visible emission and photostability of amlodipine allow confocal time-lapse imaging and the drug uptake monitoring

    Bright, highly water soluble triazacyclononane europium complexes to detect ligand binding with time-resolved FRET microscopy

    Get PDF
    Luminescent europium complexes are used in a broad range of applications as a result of their particular emissive properties. The synthesis and application of bright, highly water-soluble, and negatively charged sulfonic- or carboxylic acid derivatives of para-substituted aryl–alkynyl triazacyclononane complexes are described. Introduction of the charged solubilizing moieties suppresses cellular uptake or adsorption to living cells making them applicable for labeling and performing assays on membrane receptors. These europium complexes are applied to monitor fluorescent ligand binding on cell-surface proteins with time-resolved Förster resonance energy transfer (TR-FRET) assays in plate-based format and using TR-FRET microscopy

    Parental genome unification is highly error-prone in mammalian embryos

    Get PDF
    Most human embryos are aneuploid. Aneuploidy frequently arises during the early mitotic divisions of the embryo, but its origin remains elusive. Human zygotes that cluster their nucleoli at the pronuclear interface are thought to be more likely to develop into healthy euploid embryos. Here, we show that the parental genomes cluster with nucleoli in each pronucleus within human and bovine zygotes, and clustering is required for the reliable unification of the parental genomes after fertilization. During migration of intact pronuclei, the parental genomes polarize toward each other in a process driven by centrosomes, dynein, microtubules, and nuclear pore complexes. The maternal and paternal chromosomes eventually cluster at the pronuclear interface, in direct proximity to each other, yet separated. Parental genome clustering ensures the rapid unification of the parental genomes on nuclear envelope breakdown. However, clustering often fails, leading to chromosome segregation errors and micronuclei, incompatible with healthy embryo development

    Mammalian kinetochores count attached microtubules in a sensitive and switch-like manner.

    Get PDF
    The spindle assembly checkpoint (SAC) prevents anaphase until all kinetochores attach to the spindle. Each mammalian kinetochore binds many microtubules, but how many attached microtubules are required to turn off the checkpoint, and how the kinetochore monitors microtubule numbers, are not known and are central to understanding SAC mechanisms and function. To address these questions, here we systematically tune and fix the fraction of Hec1 molecules capable of microtubule binding. We show that Hec1 molecules independently bind microtubules within single kinetochores, but that the kinetochore does not independently process attachment information from different molecules. Few attached microtubules (20% occupancy) can trigger complete Mad1 loss, and Mad1 loss is slower in this case. Finally, we show using laser ablation that individual kinetochores detect changes in microtubule binding, not in spindle forces that accompany attachment. Thus, the mammalian kinetochore responds specifically to the binding of each microtubule and counts microtubules as a single unit in a sensitive and switch-like manner. This may allow kinetochores to rapidly react to early attachments and maintain a robust SAC response despite dynamic microtubule numbers

    Biochemical and cellular insights into the Baz2B protein, a non-catalytic subunit of the chromatin remodeling complex

    Get PDF
    Baz2B is a regulatory subunit of the ATP-dependent chromatin remodeling complexes BRF1 and BRF5, which control access to DNA during DNA-templated processes. Baz2B has been implicated in several diseases and also in unhealthy ageing, however limited information is available on the domains and cellular roles of Baz2B. To gain more insight into the Baz2B function, we biochemically characterized the TAM (Tip5/ARBP/MBD) domain with the auxiliary AT-hook motifs and the bromodomain (BRD). We observed alterations in histone code recognition in bromodomains carrying cancer-associated point mutations, suggesting their potential involvement in disease. Furthermore, the depletion of Baz2B in the Hap1 cell line resulted in altered cell morphology, reduced colony formation and perturbed transcriptional profiles. Despite that, super-resolution microscopy images revealed no changes in the overall chromatin structure in the absence of Baz2B. These findings provide insights into the biological function of Baz2B

    Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in eLife 6 (2017): e30867, doi:10.7554/eLife.30867.The actomyosin ring generates force to ingress the cytokinetic cleavage furrow in animal cells, yet its filament organization and the mechanism of contractility is not well understood. We quantified actin filament order in human cells using fluorescence polarization microscopy and found that cleavage furrow ingression initiates by contraction of an equatorial actin network with randomly oriented filaments. The network subsequently gradually reoriented actin filaments along the cell equator. This strictly depended on myosin II activity, suggesting local network reorganization by mechanical forces. Cortical laser microsurgery revealed that during cytokinesis progression, mechanical tension increased substantially along the direction of the cell equator, while the network contracted laterally along the pole-to-pole axis without a detectable increase in tension. Our data suggest that an asymmetric increase in cortical tension promotes filament reorientation along the cytokinetic cleavage furrow, which might have implications for diverse other biological processes involving actomyosin rings.DWG has received funding from the European Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement no. 241548 (MitoSys) and no. 258068 (Systems Microscopy), an ERC Starting Grant under agreement no. 281198 (DIVIMAGE), and from the Austrian Science Fund (FWF) project no. SFB F34-06 (Chromosome Dynamics). FS has received funding from an EMBO long-term fellowship (ALTF 1447–2012). SM has received funding from Human Frontier Science Program cross-disciplinary fellowship (LT000096/2011)

    Acetylated tubulin is essential for touch sensation in mice

    Get PDF
    At its most fundamental level, touch sensation requires the translation of mechanical energy into mechanosensitive ion channel opening, thereby generating electro-chemical signals. Our understanding of this process, especially how the cytoskeleton influences it, remains unknown. Here we demonstrate that mice lacking the a-tubulin acetyltransferase Atat1 in sensory neurons display profound deficits in their ability to detect mechanical stimuli. We show that all cutaneous afferent subtypes, including nociceptors have strongly reduced mechanosensitivity upon Atat1 deletion, and that consequently, mice are largely insensitive to mechanical touch and pain. We establish that this broad loss of mechanosensitivity is dependent upon the acetyltransferase activity of Atat1, which when absent leads to a decrease in cellular elasticity. By mimicking a-tubulin acetylation genetically, we show both cellular rigidity and mechanosensitivity can be restored in Atat1 deficient sensory neurons. Hence, our results indicate that by influencing cellular stiffness, atubulin acetylation sets the force required for touch

    Single-molecule visualization of DNA G-quadruplex formation in live cells.

    Get PDF
    Substantial evidence now exists to support that formation of DNA G-quadruplexes (G4s) is coupled to altered gene expression. However, approaches that allow us to probe G4s in living cells without perturbing their folding dynamics are required to understand their biological roles in greater detail. Herein, we report a G4-specific fluorescent probe (SiR-PyPDS) that enables single-molecule and real-time detection of individual G4 structures in living cells. Live-cell single-molecule fluorescence imaging of G4s was carried out under conditions that use low concentrations of SiR-PyPDS (20 nM) to provide informative measurements representative of the population of G4s in living cells, without globally perturbing G4 formation and dynamics. Single-molecule fluorescence imaging and time-dependent chemical trapping of unfolded G4s in living cells reveal that G4s fluctuate between folded and unfolded states. We also demonstrate that G4 formation in live cells is cell-cycle-dependent and disrupted by chemical inhibition of transcription and replication. Our observations provide robust evidence in support of dynamic G4 formation in living cells.Supported by programme grant funding from Cancer Research UK (C9681/A18618, S.B.) core funding from Cancer Research UK (C14303/A17197, S.B.), a Royal Society University Research Fellowship (UF120277 to S.F.L.), Research Professorship (RP150066 to D.K.), a EPSRC (EP/L027631/1 to D.K.) and a BBSRC David Phillips Fellowship (BB/R011605/1 to M.D.A
    corecore