452 research outputs found

    Autophagic Flux Failure in Neurodegeneration: Identifying the Defect and Compensating Flux Offset

    Get PDF
    Protein degradation through autophagy is one of the key pathways that maintain proteostasis and neuronal viability. Dysregulation in autophagy has been associated with a number of major protein aggregation storage disorders that are characterized by increased cellular vulnerability and susceptibility to undergo cell death. Although the molecular machinery, the proteome, and the regulation of the autophagy system are becoming increasingly clear, the specific nature of its dysfunction in the context of neuronal disease pathogenesis remains largely unclear. Moreover, although the intricate network of autophagy regulatory proteins with key metabolic checkpoints is increasingly being revealed, the relationship between autophagy dysfunction, the changing rate of protein degradation in the specific pathology, and the aggregate prone behavior of specific candidate proteins remains less understood. Many questions remain and deserve urgent attention. When does a neuron respond with heightened autophagic activity and When does the system fail to degrade autophagy cargo? This book chapter will focus on some of the main challenges in the field of autophagy research, the identity, and nature of autophagic flux failure in neurodegeneration, current means to discern and measure autophagic flux dysfunction in neuronal tissue, and recent advances in compensating the flux offset. Specifically, the role of both macroautophagy and chaperone‐mediated autophagy in neuronal function and dysfunction and the spatiotemporal changes in their rates of protein degradation will be discussed and their molecular interplay highlighted. Finally, current advances in the use of autophagy modulators to better control autophagy activity will be stressed and contextualized within the framework of re‐establishing neuronal proteostasis to favorably control cellular fate

    The variability of autophagy and cell death susceptibility

    Full text link
    Impaired autophagic machinery is implicated in a number of diseases such as heart disease, neurodegeneration and cancer. A common denominator in these pathologies is a dysregulation of autophagy that has been linked to a change in susceptibility to cell death. Although we have progressed in understanding the molecular machinery and regulation of the autophagic pathway, many unanswered questions remain. How does the metabolic contribution of autophagy connect with the cell’s history and how does its current autophagic flux affect metabolic status and susceptibility to undergo cell death? How does autophagic flux operate to switch metabolic direction and what are the underlying mechanisms in metabolite and energetic sensing, metabolite substrate provision and metabolic integration during the cellular stress response? In this article we focus on unresolved questions that address issues around the role of autophagy in sensing the energetic environment and its role in actively generating metabolite substrates. We attempt to provide answers by explaining how and when a change in autophagic pathway activity such as primary stress response is able to affect cell viability and when not. By addressing the dynamic metabolic relationship between autophagy, apoptosis and necrosis we provide a new perspective on the parameters that connect autophagic activity, severity of injury and cellular history in a logical manner. Last, by evaluating the cell’s condition and autophagic activity in a clear context of regulatory parameters in the intra- and extracellular environment, this review provides new concepts that set autophagy into an energetic feedback loop, that may assist in our understanding of autophagy in maintaining healthy cells or when it controls the threshold between cell death and cell survival

    Dietary and/or physical activity interventions in women with overweight or obesity prior to fertility treatment : protocol for a systematic review and individual participant data meta-analysis

    Get PDF
    Funding Information: This project is partly supported by the Centre for Research Excellence in Women's Health in Reproductive Life (app1171592) through a project support grant. RW is supported by a National Health and Medical Research Council (NHRMC) Investigator grant (2009767). LM is supported by a Heart Foundation Future Leader Fellowship. Funding Information: AH reports consultancy for Ferring with respect to the development of a lifestyle app. BWM is supported by an NHMRC Investigator grant (GNT1176437). BWM reports personal fees from ObsEva and Merck, and travel support from Merck, outside the submitted work. RW reports grants from the NHMRC. TM is supported by a Future Leader in Diabetes Award from the European Foundation for the Study of Diabetes/Novo Nordisk Foundation (NNF19SA058975) and grants from the regional health authority in Central Norway. ATK reports personal fees from Merck for lectures. The other authors do not have competing interest to declare. Funding Information: This project is partly supported by the Centre for Research Excellence in Women’s Health in Reproductive Life (app1171592) through a project support grant. RW is supported by a National Health and Medical Research Council (NHRMC) Investigator grant (2009767). LM is supported by a Heart Foundation Future Leader Fellowship. Publisher Copyright: © Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.Peer reviewedPublisher PD

    Biological Activity of CXCL8 Forms Generated by Alternative Cleavage of the Signal Peptide or by Aminopeptidase-Mediated Truncation

    Get PDF
    Posttranslational modification of chemokines is one of the mechanisms that regulate leukocyte migration during inflammation. Multiple natural NH(2)-terminally truncated forms of the major human neutrophil attractant interleukin-8 or CXCL8 have been identified. Although differential activity was reported for some CXCL8 forms, no biological data are available for others.status: publishe

    Spacelike Singularities and Hidden Symmetries of Gravity

    Get PDF
    We review the intimate connection between (super-)gravity close to a spacelike singularity (the "BKL-limit") and the theory of Lorentzian Kac-Moody algebras. We show that in this limit the gravitational theory can be reformulated in terms of billiard motion in a region of hyperbolic space, revealing that the dynamics is completely determined by a (possibly infinite) sequence of reflections, which are elements of a Lorentzian Coxeter group. Such Coxeter groups are the Weyl groups of infinite-dimensional Kac-Moody algebras, suggesting that these algebras yield symmetries of gravitational theories. Our presentation is aimed to be a self-contained and comprehensive treatment of the subject, with all the relevant mathematical background material introduced and explained in detail. We also review attempts at making the infinite-dimensional symmetries manifest, through the construction of a geodesic sigma model based on a Lorentzian Kac-Moody algebra. An explicit example is provided for the case of the hyperbolic algebra E10, which is conjectured to be an underlying symmetry of M-theory. Illustrations of this conjecture are also discussed in the context of cosmological solutions to eleven-dimensional supergravity.Comment: 228 pages. Typos corrected. References added. Subject index added. Published versio

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∌8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD
    • 

    corecore