49 research outputs found

    Far-infrared mapping of dusty elliptical galaxies

    Get PDF
    Preliminary results from a program to map the thermal far-infrared emission from cool dust in elliptical galaxies using the Yerkes 60-Channel Camera on the Kuiper Airborne Observatory (KAO) are presented. The 160 micron emission from the elliptical NGC 6542 is apparently extended over the optical galaxy whereas the 100 micron emission is unresolved. This implies a dust temperature gradient consistent with that expected for dust with Galactic properties exposed to the general interstellar radiation field of the elliptical galaxy. Observations of the elliptical NGC 5666 and the NGC 7463/4/5 compact group (consisting of the elliptical NGC 7464, the S0 NGC 7465, and the spiral NGC 7463) are also discussed

    Continuing or temporarily stopping prestroke antihypertensive medication in acute stroke: an individual patient data meta-analysis

    Get PDF
    Over 50% of patients are already taking blood pressure–lowering therapy on hospital admission for acute stroke. An individual patient data meta-analysis from randomized controlled trials was undertaken to determine the effect of continuation versus temporarily stopping preexisting antihypertensive medication in acute stroke. Key databases were searched for trials against the following inclusion criteria: randomized design; stroke onset ≤48 hours; investigating the effect of continuation versus stopping prestroke antihypertensive medication; and follow-up of ≥2 weeks. Two randomized controlled trials were identified and included in this meta-analysis of individual patient data from 2860 patients with ≤48 hours of acute stroke. Risk of bias in each study was low. In adjusted logistic regression and multiple regression analyses (using random effects), we found no significant association between continuation of prestroke antihypertensive therapy (versus stopping) and risk of death or dependency at final follow-up: odds ratio 0.96 (95% confidence interval, 0.80–1.14). No significant associations were found between continuation (versus stopping) of therapy and secondary outcomes at final follow-up. Analyses for death and dependency in prespecified subgroups revealed no significant associations with continuation versus temporarily stopping therapy, with the exception of patients randomized ≤12 hours, in whom a difference favoring stopping treatment met statistical significance. We found no significant benefit with continuation of antihypertensive treatment in the acute stroke period. Therefore, there is no urgency to administer preexisting antihypertensive therapy in the first few hours or days after stroke, unless indicated for other comorbid conditions

    De Novo VPS4A Mutations Cause Multisystem Disease with Abnormal Neurodevelopment.

    Get PDF
    The endosomal sorting complexes required for transport (ESCRTs) are essential for multiple membrane modeling and membrane-independent cellular processes. Here we describe six unrelated individuals with de novo missense variants affecting the ATPase domain of VPS4A, a critical enzyme regulating ESCRT function. Probands had structural brain abnormalities, severe neurodevelopmental delay, cataracts, growth impairment, and anemia. In cultured cells, overexpression of VPS4A mutants caused enlarged endosomal vacuoles resembling those induced by expression of known dominant-negative ATPase-defective forms of VPS4A. Proband-derived fibroblasts had enlarged endosomal structures with abnormal accumulation of the ESCRT protein IST1 on the limiting membrane. VPS4A function was also required for normal endosomal morphology and IST1 localization in iPSC-derived human neurons. Mutations affected other ESCRT-dependent cellular processes, including regulation of centrosome number, primary cilium morphology, nuclear membrane morphology, chromosome segregation, mitotic spindle formation, and cell cycle progression. We thus characterize a distinct multisystem disorder caused by mutations affecting VPS4A and demonstrate that its normal function is required for multiple human developmental and cellular processes.This work was supported by: UK Medical Research Council Project Grants [MR/M00046X/1], [MR/R026440/1] and Project grant from National Institute of Health Research Biomedical Research Centre at Addenbrooke's Hospital (to E.R.), Fondazione Bambino Gesù (Vite Coraggiose) and Italian Ministry of Health (CCR-2017-23669081) (to M.T.), National Institute for Health Research (NIHR) for the Cambridge Biomedical Research Centre and NIHR BioResource (Grant Number RG65966) (to F.L.R.), and a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant Number 216370/Z/19/Z) (to J.E.). CIMR was supported by a Wellcome Trust Strategic Award [100140] and Equipment Grant [093026]. This research was made possible through access to the data and findings generated by the 100,000 Genomes Project. The 100,000 Genomes Project is managed by Genomics England Limited (a wholly owned company of the Department of Health and Social Care). The 100,000 Genomes Project is funded by the National Institute for Health Research and NHS England. The Wellcome Trust, Cancer Research UK and the Medical Research Council have also funded research infrastructure. The 100,000 Genomes Project uses data provided by patients and collected by the National Health Service as part of their care and support

    Protocol for a prospective collaborative systematic review and meta-analysis of individual patient data from randomised controlled trials of vasoactive drugs in acute stroke: the Blood pressure in Acute Stroke Collaboration, stage-3 (BASC-3)

    Get PDF
    Rationale Despite several large clinical trials assessing blood pressure lowering in acute stroke, equipoise remains, particularly for ischaemic stroke. The ‘Blood pressure in Acute Stroke Collaboration’ (BASC) commenced in the mid 1990s focusing on systematic reviews and meta-analysis of blood pressure lowering in acute stroke. From the start, BASC planned to assess safety and efficacy of blood pressure lowering in acute stroke using individual patient data. Aims To determine the optimal management of blood pressure in patients with acute stroke, encompassing both intracerebral haemorrhage and ischaemic stroke. Secondary aims are to assess which clinical and therapeutic factors may alter the optimal management of high blood pressure in patients with acute stroke and to assess the effect of vasoactive treatments on haemodynamic variables. Methods and design Individual patient data from randomised controlled trials of blood pressure management in participants with ischaemic stroke and/or intracerebral haemorrhage enrolled during the ultra-acute (pre-hospital), hyper-acute (<6 hours), acute (<48 hours) and sub-acute (<168 hours) phases of stroke. Study outcomes The primary effect variable will be functional outcome defined by the ordinal distribution of the modified Rankin Scale; analyses will also be carried out in prespecified subgroups to assess the modifying effects of stroke-related and pre-stroke patient characteristics. Key secondary variables will include clinical, haemodynamic and neuroradiological variables; safety variables will comprise death and serious adverse events. Discussion Study questions will be addressed in stages, according to the protocol, before integrating these into a final overreaching analysis. We invite eligible trials to join the collaboration

    Performance characteristics of methods for quantifying spontaneous intracerebral haemorrhage: data from the Efficacy of Nitric Oxide in Stroke (ENOS) trial

    Get PDF
    Background: Poor prognosis after intracerebral haemorrhage (ICH) is related to haemorrhage characteristics. Along with developing therapeutic interventions, we sought to understand the performance of haemorrhage descriptors in large clinical trials.Methods: Clinical and neuroimaging data were obtained for 548 participants with ICH from the Efficacy of Nitric Oxide in Stroke (ENOS) trial. Independent observers performed visual categorisation of the largest diameter, measured volume using ABC/2, modified ABC/2, semiautomated segmentation (SAS), fully automatic measurement methods; shape, density and intraventricular haemorrhage were also assessed. Intraobserver and interobserver reliability were determined for these measures.Results: ICH volume was significantly different among standard ABC/2, modified ABC/2 and SAS: (mean) 12.8 (SD 16.3), 8.9 (9.2), 12.8 (13.1) cm3, respectively (p less than 0.0001). There was excellent agreement for haemorrhage volume (n=193): ABC/2 intraobserver intraclass correlation coefficient (ICC) 0.96–0.97, interobserver ICC 0.88; modified ABC/2 intraobserver ICC 0.95–0.97, interobserver ICC 0.91; SAS intraobserver ICC 0.95–0.99, interobserver ICC 0.93; largest diameter: (visual) interadjudicator ICC 0.82, (visual vs measured) adjudicator vs observer ICC 0.71; shape intraobserver ICC 0.88 interobserver ICC 0.75; density intraobserver ICC 0.86, interobserver ICC 0.73. Graeb score (mean 3.53) and modified Graeb (5.22) scores were highly correlated. Using modified ABC/2, ICH volume was underestimated in regular (by 2.2-2.5 cm3, p less than 0.0001) and irregular-shaped haemorrhages (by 4.8-4.9 cm3, p less than 0.0001). Fully automated measurement of haemorrhage volume was possible in only 5% of cases.Conclusions: Formal measurement of haemorrhage characteristics and visual estimates are reproducible. The standard ABC/2 method is superior to the modified ABC/2 method for quantifying ICH volume

    Prevalence and architecture of de novo mutations in developmental disorders.

    Get PDF
    The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year

    Phenotypic Characterization of EIF2AK4 Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension.

    Get PDF
    BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource-Rare Diseases study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and sorting intolerant from tolerant predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (Kco; 33% [interquartile range, 30%-35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23-38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. Patients with PAH with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low Kco and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation

    Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease

    Get PDF
    Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM\textit{CHM} in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.This work was supported by The National Institute for Health Research England (NIHR) for the NIHR BioResource – Rare Diseases project (grant number RG65966). The Moorfields Eye Hospital cohort of patients and clinical and imaging data were ascertained and collected with the support of grants from the National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital, National Health Service Foundation Trust, and UCL Institute of Ophthalmology, Moorfields Eye Hospital Special Trustees, Moorfields Eye Charity, the Foundation Fighting Blindness (USA), and Retinitis Pigmentosa Fighting Blindness. M.M. is a recipient of an FFB Career Development Award. E.M. is supported by UCLH/UCL NIHR Biomedical Research Centre. F.L.R. and D.G. are supported by Cambridge NIHR Biomedical Research Centre

    Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    Get PDF
    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group
    corecore