137 research outputs found

    Late Ordovician to early Silurian acritarchs from the Qusaiba-1 shallow core hole, central Saudi Arabia

    Get PDF
    Well-preserved acritarchs are documented from Upper Ordovician and lower Silurian sections in the Qusaiba-1 shallow core hole of central Saudi Arabia. Sixty-nine genera comprising 68 named species and 62 forms under open nomenclature were recorded from forty core samples. At the base of the Upper Ordovician and lower Silurian succession in Qusaiba-1 is the Quwarah Member of the Qasim Formation. This is overlain by glacio-marine deposits of the Sarah Formation, which are overlain in turn by the Qusaiba Member of the Qalibah Formation. Four distinct acritarch assemblages are informally numbered 1 to 4 from the base of the core upwards. Assemblage 1 is from the Quwarah Member, and is independently dated by Chitinozoa as being late Katian to early Hirnantian in age (Late Ordovician). The assemblage contains a number of new species, plus species reported from low-latitude Late Ordovician Laurentia and Baltica as well as the Gondwanan margin. Assemblage 2 is from a glacitectonite at the base of the Sarah Formation and is early Hirnantian in age. Assemblage 3, from the Baq'a Shale Member of the Sarah Formation, is also Hirnantian in age and is characterized by a stratigraphically admixed Ordovician palynoflora. Assemblage 4 is restricted to three samples from the Qusaiba Member in the lowermost part of the Qalibah Formation and is dated as Rhuddanian (earliest Silurian). The highest of the three samples that comprise Assemblage 4 is from the same level as a gamma ray peak at 254.8 ft. Reworking of Middle Ordovician forms is evident in Assemblage 3 and is attributed to processes of glacial erosion and resedimentation during glacial melting. Reworked specimens are probably from the Hanadir Member and possibly also the Kahfah Member of the Qasim Formation. The extent of later Ordovician reworking in Assemblage 3, for example reworking from the Quwarah Member, is unclear. However, given that glacial erosion extended to levels below the Quwarah Member, Late Ordovician palynomorphs present in Assemblage 3 might also be reworked. The extent of any reworking in assemblages 1 and 2 is uncertain. There is no evidence for reworking in Assemblage 4. Two new acritarch genera, five new species and one new combination are proposed: Dorsennidium polorum (Miller and Eames, 1982) comb. nov., Falavia magniretifera gen. et sp. nov., Inflatarium trilobatum gen. et sp. nov., Nexosarium mansouri sp. nov., Orthosphaeridium orthogonium sp. nov. and Tunisphaeridium bicaudatum sp. nov. Samples from the same set were used for chitinozoan, scolecodont and miospore studies (this volume). Eurypterid and graptolite remains are also presen

    A distinctive marginal marine palynological assemblage from the Přídolí of northwestern Saudi Arabia

    Get PDF
    A rare occurrence of a rich and diverse palynological assemblage from the Tawil Formation is described from well JLMD-EW-8 in northwestern Saudi Arabia. The composition of this assemblage strongly indicates a middle Přídolí age. The assemblage encountered contains very characteristic chitinozoans, acritarchs, tasmanitids, freshwater algae, scolecodonts, eurypterid cuticle and other organic remains. Land-derived miospores are also common and two new cryptospore species (Cymbohilates jalamidensis and Gneudnaspora sordida) are herein formally described. Most taxa of taxonomic interest and useful for regional and intercontinental correlation are illustrated. The palaeogeographic distribution of this assemblage is also discussed as organic-walled microphytoplankton, chitinozoans and miospores encountered in the studied samples correlate well with similar assemblages from various Algerian, Libyan, and Ibero-armorican localities (i.e. Ibarmaghian regions). This corresponds to what is considered as a transgressive middle Přídolí event in the Algerian Sahara, with non-marine intervals bracketing this brief marine sea-level rise. This event is likely to have extended into all of north Gondwana, including Arabia, and can be correlated to the S50 Maximum Flooding Surface from the sequence stratigraphic framework defined in the Neftex Geodynamic Earth Model

    Middle Ordovician acritarchs and problematic organic-walled microfossils from the Saq-Hanadir transitional beds in the QSIM-801 well, Saudi Arabia

    Get PDF
    Core samples from the QSIM-801 water well, drilled in central Saudi Arabia, cover a 93-foot interval spanning the transition between the Sajir Member of the Saq Formation, that consists mainly of sandstones of tidal sand flat environments, and the Hanadir Member of the Qasim Formation, characterized by argillaceous graptolitic mudstones, corresponding to a tidal delta front. The samples contain abundant, exceptionally well-preserved and diverse palynomorphs, which include cryptospores, acritarchs and chitinozoans, other problematic organic-walled microfossils as well as other organic particles such as cuticle-like fragments. The studied interval is biostratigraphically well constrained by the presence of chitinozoans of the formosa and pissotensis Zones of late-early to late Darriwilian age (Middle Ordovician) in the uppermost Saq Formation and Hanadir Member. The biostratigraphic age of the Sajir Member considered to span the Dapingian–Darriwilian boundary, is re-discussed based on the results herein. The uppermost part of the Sajir Member yielded the ichnofossil, Phycodes fusiforme. Acritarch assemblages from the Sajir Member of the Saq Formation are poorly diversified and dominated by sphaeromorphs. More diverse assemblages of acritarchs, associated with enigmatic forms, occur in the Hanadir Member of the Qasim Formation. The contact between the two formations and the transition between the palynomorph assemblages are sharp, suggesting a stratigraphic hiatus. A quantitative analysis allows us to discuss the paleoenvironmental changes and possibly climatic changes associated with an hypothesis of ice house conditions during this period. Among the diagnostic acritarch taxa observed are Frankea breviuscula, F. longiuscula, Baltisphaeridium ternatum, Dasydorus cirritus, Dicrodiacrodium ancoriforme, Poikilofusa ciliaris, Pterospermopsis colbathii and Uncinisphaera fusticula. These are associated with other typical forms known to range across the Lower–Middle Ordovician boundary, such as Aremoricanium rigaudae, Aureotesta clathrata, Barakella fortunata, B. rara, Baltisphaeridium klabavense, Glaucotesta latiramosa and Striatotheca spp. Galeate and peteinoid acritarchs are also well represented, as well as tiny forms of ultraplanctonic size. Three new species of acritarchs are proposed: Frankea longiuscula var. darriwilense var. nov, Micrhystridium regulum sp. nov, and Tyrannus proteus sp. nov. Repeated occurrences throughout the section of cryptospores, problematic microfossils such as organic filaments, cuticle-like tissues, striated and pigmented leiospheres frequently in clusters, are interpreted to reflect recurrent terrestrial and freshwater inputs in the depositional environment. Single-specimen, high-resolution analyses using Confocal Laser Scanning Microscopy on the enigmatic form Tyrannus proteus sp. nov. show fluorescence emission spectra and microstructural properties significantly different from those of typical marine acritarchs from the same levels

    First Appearance Datums (FADs) of selected acritarch taxa and correlation between Lower and Middle Ordovician stages

    Get PDF
    First Appearance Datums (FADs) of selected, easily recognizable acritarch morphotypes are assessed to determine their potential contribution to correlation between Lower and Middle Ordovician stages and substage divisions along the Gondwanan margin (Perigondwana) and between Perigondwana and other palaeocontinents. The FADs for 19 genera, species and species groups are recorded throughout their biogeographical ranges. The taxa investigated fall into three groups. Some have FADs at about the same level throughout their biogeographical ranges and are useful for long‐distance and intercontinental correlation. Among these are Coryphidium, Dactylofusa velifera, Peteinosphaeridium and Rhopaliophora in the upper Tremadocian Stage; Arbusculidium filamentosum, Aureotesta clathrata simplex and Coryphidium bohemicum in the lower–middle Floian Stage; Dicrodiacrodium in the upper Floian Stage; Frankea in the Dapingian–lower Darriwilian stages; and Orthosphaeridium spp., with FADs in the Dapingian–lower Darriwilian stages of Perigondwanan regions and at about the same level in Baltica. Other taxa, however, have diachronous (or apparently diachronous) FADs, and this needs to be taken into account when using them for correlation. A second group of genera and species, comprising Striatotheca, the Veryhachium lairdii group and the V. trispinosum group, have a recurring pattern of FADs in the Tremadocian Stage on Avalonia and in South Gondwana and West Gondwana, but in the Floian Stage of South China and East Gondwana. The third group, consisting of Arkonia, Ampullula, Barakella, Dasydorus, Liliosphaeridium and Sacculidium, have FADs that are markedly diachronous throughout their biogeographical ranges, although the global FADs of Arkonia, Ampullula, Liliosphaeridium and Sacculidium are apparently in South China and/or East Gondwana. It is possible that diachronous FADs are only apparent and an artefact of sampling. Nevertheless, an alternative interpretation, suggested by recurring patterns, is that some as yet undetermined factor controlled a slower biogeographical spread over time, resulting in diachroneity

    An endemic flora of dispersed spores from the Middle Devonian of Iberia

    Get PDF
    Diverse assemblages of dispersed spores have been recovered from Middle Devonian rocks in northern Spain, revealing a significant endemism in the flora. Middle Devonian Iberia was part of a relatively isolated island complex (Armorican Terrane Assemblage), separated by considerable tracts of ocean from Laurussia to the north‐west and Gondwana to the south‐east. The Middle Devonian deposits of the Cantabrian Zone of northern Spain are entirely marine and comprise a thick clastic unit sandwiched between extensive carbonate units. The clastic unit, the laterally equivalent Naranco, Huergas and Gustalapiedra formations of Asturias, León and Palencia provinces, represents a nearshore‐offshore transect across a marine shelf. This unit is also believed to encompass the Kačák Event, an important global extinction event. The recovered palynomorphs include marine (phytoplankton, chitinozoans, scolecodonts) and terrestrial (spores) assemblages. These are abundant and well preserved, although of variable thermal maturity. Here, we describe the dispersed spores and consider their significance as regards biostratigraphy, palaeophytogeography and Kačák Event interpretation. The dispersed spores represent a single assemblage assignable to the lemurata–langii Assemblage Zone (lemurata Subzone) indicating a probable early (but not earliest) Givetian age. Signs of endemism include various taxa known only from this region, some taxa appearing to have discordant ranges compared with elsewhere, and the absence from Iberia of certain prominent taxa characteristic of coeval assemblages elsewhere, such as those with grapnel‐tipped processes. The abrupt interruption of carbonate deposition, with a change to rapid deposition of thick clastic deposits, provides support for a monsoonal cause of the Kačák Event

    The life and scientific work of William R. Evitt (1923-2009)

    Get PDF
    Occasionally (and fortunately), circumstances and timing combine to allow an individual, almost singlehandedly, to generate a paradigm shift in his or her chosen field of inquiry. William R. (‘Bill’) Evitt (1923-2009) was such a person. During his career as a palaeontologist, Bill Evitt made lasting and profound contributions to the study of both dinoflagellates and trilobites. He had a distinguished, long and varied career, researching first trilobites and techniques in palaeontology before moving on to marine palynomorphs. Bill is undoubtedly best known for his work on dinoflagellates, especially their resting cysts. He worked at three major US universities and spent a highly significant period in the oil industry. Bill's early profound interest in the natural sciences was actively encouraged both by his parents and at school. His alma mater was Johns Hopkins University where, commencing in 1940, he studied chemistry and geology as an undergraduate. He quickly developed a strong vocation in the earth sciences, and became fascinated by the fossiliferous Lower Palaeozoic strata of the northwestern United States. Bill commenced a PhD project on silicified Middle Ordovician trilobites from Virginia in 1943. His doctoral research was interrupted by military service during World War II; Bill served as an aerial photograph interpreter in China in 1944 and 1945, and received the Bronze Star for his excellent work. Upon demobilisation from the US Army Air Force, he resumed work on his PhD and was given significant teaching duties at Johns Hopkins, which he thoroughly enjoyed. He accepted his first professional position, as an instructor in sedimentary geology, at the University of Rochester in late 1948. Here Bill supervised his first two graduate students, and shared a great cameraderie with a highly motivated student body which largely comprised World War II veterans. At Rochester, Bill continued his trilobite research, and was the editor of the Journal of Paleontology between 1953 and 1956. Seeking a new challenge, he joined the Carter Oil Company in Tulsa, Oklahoma, during 1956. This brought about an irrevocable realignment of his research interests from trilobites to marine palynology. He undertook basic research on aquatic palynomorphs in a very well-resourced laboratory under the direction of one of his most influential mentors, William S. ‘Bill’ Hoffmeister. Bill Evitt visited the influential European palynologists Georges Deflandre and Alfred Eisenack during late 1959 and, while in Tulsa, first developed several groundbreaking hypotheses. He soon realised that the distinctive morphology of certain fossil dinoflagellates, notably the archaeopyle, meant that they represent the resting cyst stage of the life cycle. The archaeopyle clearly allows the excystment of the cell contents, and comprises one or more plate areas. Bill also concluded that spine-bearing palynomorphs, then called hystrichospheres, could be divided into two groups. The largely Palaeozoic spine-bearing palynomorphs are of uncertain biological affinity, and these were termed acritarchs. Moreover, he determined that unequivocal dinoflagellate cysts are all Mesozoic or younger, and that the fossil record of dinoflagellates is highly selective. Bill was always an academic at heart and he joined Stanford University in 1962, where he remained until retiring in 1988. Bill enjoyed getting back into teaching after his six years in industry. During his 26-year tenure at Stanford, Bill continued to revolutionise our understanding of dinoflagellate cysts. He produced many highly influential papers and two major textbooks. The highlights include defining the acritarchs and comprehensively documenting the archaeopyle, together with highly detailed work on the morphology of Nannoceratopsis and Palaeoperidinium pyrophorum using the scanning electron microscope. Bill supervised 11 graduate students while at Stanford University. He organised the Penrose Conference on Modern and Fossil Dinoflagellates in 1978, which was so successful that similar meetings have been held about every four years since that inaugural symposium. Bill also taught many short courses on dinoflagellate cysts aimed at the professional community. Unlike many eminent geologists, Bill actually retired from actively working in the earth sciences. His full retirement was in 1988; after this he worked on only a small number of dinoflagellate cyst projects, including an extensive paper on the genus Palaeoperidinium

    Le métier de chiffonnier. Itinéraires en pays de Bray (1856-1977)

    No full text
    Ce travail consiste en l’étude d'un gagne-pain quotidien pour des travailleurs pauvres. L’insalubrité de l’activité et le comportement des chiffonniers font qu’ils inspirent une certaine méfiance à la population au XIXe siècle, alors qu’au XXe siècle, le métier commence à se faire accepter. Cet article propose une description générale de cette profession, tout en s’appuyant sur des exemples précis illustrés par le cas d'un chef-lieu de canton haut-normand durant les XIXe et XXe siècles.Le Hérissé Yann. Le métier de chiffonnier. Itinéraires en pays de Bray (1856-1977). In: Le travail avant la révolution industrielle. Actes du 127e Congrès national des sociétés historiques et scientifiques, « Le travail et les hommes », Nancy, 2002. Paris : Editions du CTHS, 2006. pp. 237-245. (Actes des congrès nationaux des sociétés historiques et scientifiques, 127-7

    «Des villes et des îles»

    No full text
    Le Hérissé Renée. «Des villes et des îles». In: Mappemonde, 1991/2. pp. 30-31

    Late Ordovician-earliest Silurian palynomorphs from northern Chad and correlation with contemporaneous deposits of southeastern Libya

    Get PDF
    International audienceWell preserved assemblages of cryptospores, chitinozoans, acritarchs, leiospheres, tasmanitids, colonies of Gloeocapsomorpha, scolecodonts and eurypterid fragments from 23 core samples of the Moussegouda core hole in the Erdi Basin, northern Chad, and from two samples from well KW-2 in Kufra Basin, South East Libya are investigated. These palynomorphs were recovered from the southernmost North African marine deposits of Late Ordovician and possibly early Silurian age. The palaeoenvironment evolves from late Hirnantian glacio-marine diamictites to silt-dominated sequences suggesting a marginal marine environment of possibly latest Hirnantian to earliest Rhuddanian age (post-elongata-pre-fragilis chitinozoan assemblages). The recovered palynomorph assemblages are compared and correlated with contemporaneous assemblages recorded in other northern Gondwana localities (Mauritania, Morocco Algeria, Libya, Africa, Saudi Arabia, Jordan), and in South Africa, in order to evaluate possible effects of the ice cap melting on palynomorph assemblages and sedimentation. Our goal is also to improve the regional biostratigraphy across the Ordovician-Silurian boundary. The composition of the recovered palynomorph assemblages, with mixed terrestrial and marine microflora, suggests that the topmost Ordovician or earliest Silurian in northern Chad and southeastern Libya, reflects nearshore conditions, with obvious fresh water influences. The lack of black shale or grey shale in the uppermost Ordovician and of "hot shale" in the lower Silurian in these areas, and their replacement by siltstones, are probably related to an isostatic readjustment that rapidly starved the marine sedimentation in the areas previously overlain by a thick ice cover during the climax of the Hirnantian glaciation. Tasmanites tzadiensis Le Herisse sp. nov. and Euconochitina moussegoudaensis Paris sp. nov., two new palynomorphs of biostratigraphical interest are described and illustrated
    corecore