30 research outputs found

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    Get PDF
    Superparamagnetic iron oxide nanoparticles can providemultiple benefits for biomedical applications in aqueous environments such asmagnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.status: publishe

    Orientation effects accompanying the propagation of ultrarelativistic electrons through crystals

    No full text
    The results obtained by experimentally investigating the dynamics of the propagation of 1.2-GeV electrons through a thin silicon single crystal are discussedyesBelgorod State Universit

    Orientation effects accompanying the propagation of ultrarelativistic electrons through crystals

    No full text
    yesThe results obtained by experimentally investigating the dynamics of the propagation of 1.2-GeV electrons through a thin silicon single crystal are discussedBelgorod State Universit

    ALICE: Physics Performance Report

    No full text
    ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently involves more than 900 physicists and senior engineers, from both the nuclear and high-energy physics sectors, from over 90 institutions in about 30 countries. The ALICE detector is designed to cope with the highest particle multiplicities above those anticipated for Pb-Pb collisions (dN ch/dy up to 8000) and it will be operational at the start-up of the LHC. In addition to heavy systems, the ALICE Collaboration will study collisions of lower-mass ions, which are a means of varying the energy density, and protons (both pp and pA), which primarily provide reference data for the nucleus-nucleus collisions. In addition, the pp data will allow for a number of genuine pp physics studies. The detailed design of the different detector systems has been laid down in a number of Technical Design Reports issued between mid-1998 and the end of 2004. The experiment is currently under construction and will be ready for data taking with both proton and heavy-ion beams at the start-up of the LHC. Since the comprehensive information on detector and physics performance was last published in the ALICE Technical Proposal in 1996, the detector, as well as simulation, reconstruction and analysis software have undergone significant development. The Physics Performance Report (PPR) provides an updated and comprehensive summary of the performance of the various ALICE subsystems, including updates to the Technical Design Reports, as appropriate. The PPR is divided into two volumes. Volume I, published in 2004 (CERN/LHCC 2003-049, ALICE Collaboration 2004 J. Phys. G: Nucl. Part. Phys. 30 1517-1763), contains in four chapters a short theoretical overview and an extensive reference list concerning the physics topics of interest to ALICE, the experimental conditions at the LHC, a short summary and update of the subsystem designs, and a description of the offline framework and Monte Carlo event generators. The present volume, Volume II, contains the majority of the information relevant to the physics performance in proton-proton, proton-nucleus, and nucleus-nucleus collisions. Following an introductory overview, Chapter 5 describes the combined detector performance and the event reconstruction procedures, based on detailed simulations of the individual subsystems. Chapter 6 describes the analysis and physics reach for a representative sample of physics observables, from global event characteristics to hard processes

    Technical Design Report on Forward Detectors:FMD, T0 and V0.

    No full text

    ALICE forward detectors: FMD, TO and VO: Technical Design Report

    No full text

    ALICE: Physics performance report, volume I

    No full text
    Cortese P, Dellacasa G, Ramello L, et al. ALICE: Physics performance report, volume I. Journal of Physics G: Nuclear and Particle Physics. 2004;30(11):1517-1763.ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently includes more than 900 physicists and senior engineers, from both nuclear and high-energy physics, from about 80 institutions in 28 countries. The experiment was approved in February 1997. The detailed design of the different detector systems has been laid down in a number of Technical Design Reports issued between mid-1998 and the end of 2001 and construction has started for most detectors. Since the last comprehensive information on detector and physics performance was published in the ALICE Technical Proposal in 1996, the detector as well as simulation, reconstruction and analysis software have undergone significant development. The Physics Performance Report (PPR) will give an updated and comprehensive summary of the current status and performance of the various ALICE subsystems, including updates to the Technical Design Reports, where appropriate, as well as a description of systems which have not been published in a Technical Design Report. The PPR will be published in two volumes. The current Volume I contains: 1. a short theoretical overview and an extensive reference list concerning the physics topics of interest to ALICE, 2. relevant experimental conditions at the LHC, 3. a short summary and update of the subsystem designs, and 4. a description of the offline framework and Monte Carlo generators. Volume II, which will be published separately, will contain detailed simulations of combined detector performance, event reconstruction, and analysis of a representative sample of relevant physics observables from global event characteristics to hard processes. (Some figures in this article are in colour only in the electronic version.

    Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure.

    No full text
    corecore