302 research outputs found

    Si-based anode materials for lithium rechargeable batteries

    Get PDF
    Silicon is a very promising candidate to replace graphite as the anode in Li-ion batteries because of its very high theoretical capacity, relatively low cost and low toxicity. However, it has not yet made its way into commercial cells. This review highlights recent progress on Si-based anode materials for lithium rechargeable batteries

    Alkali-Metal Sulfide as Cathodes toward Safe and High-Capacity Metal (M = Li, Na, K) Sulfur Batteries

    Get PDF
    © 2020 Wiley-VCH GmbH Rechargeable alkali-metal–sulfur (M–S) batteries, because of their high energy density and low cost, have been recognized as one of the most promising next-generation energy storage technologies. Nevertheless, the dissolution of metal polysulfides in organic liquid electrolytes and safety issues related to the metal anodes are greatly hindering the development of the M–S batteries. Alkali-metal sulfides (M2Sx) are emerging as cathode materials, which can pair with various safe nonalkali-metal anodes, such as silicon and tin. As a result, the combined M2Sx cathode-based M–S batteries can achieve high capacity as well as safety, thereby providing a more feasible battery technology for practical applications. In this review, recent progress in developing M2Sx cathode-based M–S batteries is systematically summarized, including the activation methods for M2Sx cathodes, M2Sx cathode optimization, and the improvement of electrolytes and anode materials. Furthermore, perspectives and future research directions of M2Sx cathode-based M–S batteries are proposed

    High-surface-area -Fe2O3/carbon nanocomposite: one-step synthesis and its highly reversible and enhanced high-rate lithium storage properties

    Get PDF
    Hollow-structured α-Fe2O3/carbon (HIOC) nanocomposite with a high surface area of around 260 m2 g−1 was synthesized by a one-step, in situ, and industrially-oriented spray pyrolysis method using iron lactate and sucrose solution as the precursors. The small α-Fe2O3 nanocrystals were highly dispersed inside amorphous carbon to form a carbon nanocomposite. Electrochemical measurements showed that the carbon played an important role in affecting both the cycle life and the rate capability of the electrode. The HIOC composites showed the best electrochemical performance in terms of high capacity (1210 mAh g−1 at a current density of 0.1 C), enhanced rate capability and excellent cycle stability (720 mAh g−1 at a current density of 2 C up to 220 cycles). HIOC nanocomposite can also be used in other potential applications, such as in gas sensors, catalysts, and biomedical applications because it is easily dispersed in water and has a high surface area

    Synthesis of nitrogen-doped graphene via thermal treatment of graphene oxide within methylimidazole and its capacitance performance as electric double layer capacitor

    Get PDF
    Nitrogen-doped graphene was successfully synthesised from graphene oxide (GO) and 2-methylimidazole composite via thermal treatment under argon flow at 700oC within 1h. This synthesised N-doped graphene exhibits homogeneous nitrogen doping with concentration of ~5% in three different nitrogen configuration namelypyridinic N, pyrrolic N and graphitic N. The electric double layer capacitor (EDLC) made up with this N-doped graphene showed excellent specific capacitance 274 F/g at current density of 1A/g, which was ~7 times higher than GO. This EDLC capacitor showed excellent cyclic stability up to 5000 cycles with capacity retention of ~91%

    A new energy storage system: Rechargeable potassium-selenium battery

    Get PDF
    A new reversible and high-performance potassium-selenium (K-Se) battery, using confined selenium/carbonized-polyacrylonitrile (PAN) composite (c-PAN-Se) as cathode and metallic potassium as anode, is reported in this work. The PAN-derived carbon matrix could effectively confine the small Se molecules and provide a sufficient buffer for the volume changes. The reversible formation of small-molecule trigonal Se (Se1, P3121) phase could essentially inhibit the formation of polyselenides and account for outstanding electrochemical performance. The carbonate-based electrolyte further synergistically diminishes the shuttle effect by inhibiting the formation of polyselenides in the meantime. The as-prepared K-Se battery shows a reversible capacity of 1904 mAh cmÂż3after 100 cycles at 0.2 C and rate retention of 89% from 0.1 to 2 C. In addition, the charge-discharge mechanism is also investigated via the combination of in-situ and ex-situ synchrotron X-ray diffraction (XRD), and Raman spectroscopy analysis. The results reveal that the introduction of K+ions leads to the cleavage of C-Se bonds, the rearrangement of selenium atoms, and the final formation of the main product K2Se. Moreover, the reversible formation of trigonal Se (Se1, P3121) phase was detected in the reaction with K+. These findings not only can advance our understanding of this family of batteries, but also provide insight into chemically-bonded selenium composite electrodes, which could give guidance for scientific research and the optimization of Se and S electrodes for the K-S, Na-S, Li-S, Na-Se, and Li-Se batteries

    The Influence of Climate Warming on the Hydrological Regime of Thermokarst Lakes in the Subarctic (Chukotka, Russia)

    Get PDF
    Using remote methods and materials for meteorological observations, climate changes and the area of 36 thermokarst lakes located in the Anadyr lowland in Chukotka over a 65-year period were analyzed. More than 20 lakes were studied by field methods. With an increase in the average annual air temperature by 1.8°C and an increase in the amount of annual precipitation by 135 mm, the total area of the lakes mirror decreased by 24%. Cryogenic processes have had a significant impact on the decrease in the water quantity of lakes. Thermal erosion in drainage channels has led to multiple discharges of water in abnormally warm years. The heaving of permafrost in the coastal zone affected the reduction of the lake catchment area. If the trends of climate change continue, further drainage of large lakes and an increase in the number of small sag pond is expected in the next 25 years

    A significant improvement in both low- and high-field performance of MgB2 superconductors through graphene oxide doping

    Get PDF
    The effects of graphene oxide (GO) doping on the superconducting properties of MgB2 were studied using bulk samples made by the diffusion method. Homogeneous dispersions of GO in tetrahydrofuran were obtained through a novel synthesis method, which is then chemically doped with MgB2. It was found that GO doping significantly improves the critical current density, under both low and high magnetic fields, which distinguishes GO from all the other elements doped into MgB2 so far. 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-step shear exfoliation

    Get PDF
    Earth-abundant potassium is a promising alternative to lithium in rechargeable batteries, but a pivotal limitation of potassium-ion batteries is their relatively low capacity and poor cycling stability. Here, a high-performance potassium-ion battery is achieved by employing few-layered antimony sulfide/carbon sheet composite anode fabricated via one-step high-shear exfoliation in ethanol/water solvent. Antimony sulfide with few-layered structure minimizes the volume expansion during potassiation and shortens the ion transport pathways, thus enhancing the rate capability; while carbon sheets in the composite provide electrical conductivity and maintain the electrode cycling stability by trapping the inevitable by-product, elemental sulfur. Meanwhile, the effect of the exfoliation solvent on the fabrication of two-dimensional antimony sulfide/carbon is also investigated. It is found that water facilitates the exfoliation by lower diffusion barrier along the [010] direction of antimony sulfide, while ethanol in the solvent acts as the carbon source for in situ carbonization

    Study of the production of charged pions, kaons, and protons in pPb collisions at √SNN=5.02 TeV

    Get PDF
    Peer reviewe

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    • …
    corecore