82 research outputs found

    M-DC8+leukocytes - A novel human dendritic cell population

    Get PDF
    Dendritic cells (DC) constitute a heterogeneous leukocyte population having in common a unique capacity to induce primary T cell responses and are therefore most attractive candidates for immunomodulatory strategies. Two populations of blood DC (CD11c+ CD123(dim) and CD11c- CD123(high)) have been defined so far. However, their direct isolation for experimental purposes is hampered by their low frequency and by the lack of selective markers allowing large scale purification from blood. Here we describe the monoclonal antibody (mAb) M-DC8, which was generated by immunizing mice with highly enriched blood DC. This mAb specifically reacts with 0.2-1% of blood leukocytes and enables their direct isolation by a one-step immunomagnetic procedure from fresh mononuclear cells. These cells can be differentiated from T cells, B cells, NK cells and monocytes using lineage-specific antibodies. M-DC8+ cells express HLA class It molecules, CD33 and low levers of the costimulatory molecules CD86 and CD40. Upon in vitro culture M-DC8+ cells spontaneously mature into cells with the phenotype of highly stimulatory cells as documented by the upregulation of HLA-DR, CD86 and CD40; in parallel CD80 expression is induced. M-DC8+ cells display an outstanding capacity to present antigen. In particular, they proved to be excellent stimulators of autologous mixed leukocyte reaction and to activate T cells against primary antigens such as keyhole limpet hemocyanin. Furthermore, they induce differentiation of purified allogeneic cytotoxic T cells into alloantigen-specific cytotoxic effector cells. While the phenotypical analysis reveals similarities with the two known blood DC populations, the characteristic expression of Fc gamma RIII (CD16) and the M-DC8 antigen clearly defines them as a novel population of blood DC. The mAb M-DC8 might thus be a valuable tool to determine circulating DC for diagnostic purposes and to isolate these cells for studies of antigen-specific T cell priming. Copyright (C) 2000 S. Karger AG, Basel

    The CD16+ (FcγRIII+) Subset of Human Monocytes Preferentially Becomes Migratory Dendritic Cells in a Model Tissue Setting

    Get PDF
    Much remains to be learned about the physiologic events that promote monocytes to become lymph-homing dendritic cells (DCs). In a model of transendothelial trafficking, some monocytes become DCs in response to endogenous signals. These DCs migrate across endothelium in the ablumenal-to-lumenal direction (reverse transmigration), reminiscent of the migration into lymphatic vessels. Here we show that the subpopulation of monocytes that expresses CD16 (Fcγ receptor III) is predisposed to become migratory DCs. The vast majority of cells derived from CD16+ monocytes reverse transmigrated, and their presence was associated with migratory cells expressing high levels of CD86 and human histocompatibility leukocyte antigen (HLA)-DR, and robust capacity to induce allogeneic T cell proliferation. A minority of CD16− monocytes reverse transmigrated, and these cells stimulated T cell proliferation less efficiently. CD16 was not functionally required for reverse transmigration, but promoted cell survival when yeast particles (zymosan) were present as a maturation stimulus in the subendothelial matrix. The cell surface phenotype and migratory characteristics of CD16+ monocytes were inducible in CD16− monocytes by preincubation with TGFβ1. We propose that CD16+ monocytes may contribute significantly to precursors for DCs that transiently survey tissues and migrate to lymph nodes via afferent lymphatic vessels

    Current Concepts on 6-sulfo LacNAc Expressing Monocytes (slanMo)

    Get PDF
    The human mononuclear phagocytes system consists of dendritic cells (DCs), monocytes, and macrophages having different functions in bridging innate and adaptive immunity. Among the heterogeneous population of monocytes the cell surface marker slan (6-sulfo LacNAc) identifies a specific subset of human CD14− CD16+ non-classical monocytes, called slan+ monocytes (slanMo). In this review we discuss the identity and functions of slanMo, their contributions to immune surveillance by pro-inflammatory cytokine production, and cross talk with T cells and NK cells. We also consider the role of slanMo in the regulation of chronic inflammatory diseases and cancer. Finally, we highlight unresolved questions that should be the focus of future research

    Human innate immune cell crosstalk induces melanoma cell senescence

    Get PDF
    Mononuclear phagocytes and NK cells constitute the first line of innate immune defense. How these cells interact and join forces against cancer is incompletely understood. Here, we observed an early accumulation of slan+^{+} (6-sulfo LacNAc) non-classical monocytes (slanMo) in stage I melanoma, which was followed by an increase in NK cell numbers in stage III. Accordingly, culture supernatants of slanMo induced migration of primary human NK cells in vitro via the chemotactic cytokine IL-8 (CXCL8), suggesting a role for slanMo in NK cell recruitment into cancer tissues. High levels of TNF-α and IFN-γ were produced in co-cultures of TLR-ligand stimulated slanMo and NK cells, whereas much lower levels were contained in cultures of slanMo and NK cells alone. Moreover, TNF-α and IFN-γ concentrations in slanMo/NK cell co-cultures exceeded those in CD14+^{+} monocyte/NK cell and slanMo/T cell co-cultures. Importantly, TNF-α and IFN-γ that was produced in TLR-ligand stimulated slanMo/NK cell co-cultures induced senescence in different melanoma cell lines, as indicated by reduced melanoma cell proliferation, increased senescence-associated β-galactosidase expression, p21 upregulation, and induction of a senescence-associated secretory phenotype (SASP). Taken together, we identified a role for slanMo and NK cells in a collaborative innate immune defense against melanoma by generating a tumor senescence-inducing microenvironment. We conclude that enhancing the synergistic innate immune crosstalk of slanMo and NK cells could improve current immunotherapeutic approaches in melanoma

    Impact of p38 mitogen-activated protein kinase inhibition on immunostimulatory properties of human 6-sulfo LacNAc dendritic cells

    Get PDF
    p38 Mitogen-activated protein kinase (MAPK) plays a crucial role in the induction and regulation of innate and adaptive immunity. Furthermore, p38 MAPK can promote tumor invasion, metastasis, and angiogenesis. Based on these properties, p38 MAPK inhibitors emerged as interesting candidates for the treatment of immune-mediated disorders and cancer. However, the majority of p38 MAPK inhibitor-based clinical trials failed due to poor efficacy or toxicity. Further studies investigating the influence of p38 MAPK inhibitors on immunomodulatory capabilities of human immune cells may improve their therapeutic potential. Here, we explored the impact of the p38 MAPK inhibitor SB203580 on the pro-inflammatory properties of native human 6-sulfo LacNAc dendritic cells (slanDCs). SB203580 did not modulate maturation of slanDCs and their capacity to promote T-cell proliferation. However, SB203580 significantly reduced the production of pro-inflammatory cytokines by activated slanDCs. Moreover, inhibition of p38 MAPK impaired the ability of slanDCs to differentiate naïve CD4(+) T cells into T helper 1 cells and to stimulate interferon-γ secretion by natural killer cells. These results provide evidence that SB203580 significantly inhibits various important immunostimulatory properties of slanDCs. This may have implications for the design of p38 MAPK inhibitor-based treatment strategies for immune-mediated disorders and cancer

    A Novel Modular Antigen Delivery System for Immuno Targeting of Human 6-sulfo LacNAc-Positive Blood Dendritic Cells (SlanDCs)

    Get PDF
    Previously, we identified a major myeloid-derived proinflammatory subpopulation of human blood dendritic cells which we termed slanDCs (e.g. Schäkel et al. (2006) Immunity 24, 767-777). The slan epitope is an O-linked sugar modification (6-sulfo LacNAc, slan) of P-selectin glycoprotein ligand-1 (PSGL-1). As slanDCs can induce neoantigen-specific CD4+ T cells and tumor-reactive CD8+ cytotoxic T cells, they appear as promising targets for an in vivo delivery of antigens for vaccination. However, tools for delivery of antigens to slanDCs were not available until now. Moreover, it is unknown whether or not antigens delivered via the slan epitope can be taken up, properly processed and presented by slanDCs to T cells.Single chain fragment variables were prepared from presently available decavalent monoclonal anti-slan IgM antibodies but failed to bind to slanDCs. Therefore, a novel multivalent anti-slanDC scaffold was developed which consists of two components: (i) a single chain bispecific recombinant diabody (scBsDb) that is directed on the one hand to the slan epitope and on the other hand to a novel peptide epitope tag, and (ii) modular (antigen-containing) linker peptides that are flanked at both their termini with at least one peptide epitope tag. Delivery of a Tetanus Toxin-derived antigen to slanDCs via such a scBsDb/antigen scaffold allowed us to recall autologous Tetanus-specific memory T cells.In summary our data show that (i) the slan epitope can be used for delivery of antigens to this class of human-specific DCs, and (ii) antigens bound to the slan epitope can be taken up by slanDCs, processed and presented to T cells. Consequently, our novel modular scaffold system may be useful for the development of human vaccines

    Healthcare provision for insect venom allergy patients during the COVID-19 pandemic

    Get PDF
    The population prevalence of insect venom allergy ranges between 3–5%, and it can lead to potentially life-threatening allergic reactions. Patients who have experienced a systemic allergic reaction following an insect sting should be referred to an allergy specialist for diagnosis and treatment. Due to the widespread reduction in outpatient and inpatient care capacities in recent months as a result of the COVID-19 pandemic, the various allergy specialized centers in Germany, Austria, and Switzerland have taken different measures to ensure that patients with insect venom allergy will continue to receive optimal allergy care. A recent data analysis from the various centers revealed that there has been a major reduction in newly initiated insect venom immunotherapy (a 48.5% decline from March–June 2019 compared to March–June 2020: data from various centers in Germany, Austria, and Switzerland). The present article proposes defined organizational measures (e.g., telephone and video appointments, rearranging waiting areas and implementing hygiene measures and social distancing rules at stable patient numbers) and medical measures (collaboration with practice-based physicians with regard to primary diagnostics, rapid COVID-19 testing, continuing already-initiated insect venom immunotherapy in the outpatient setting by making use of the maximal permitted injection intervals, prompt initiation of insect venom immunotherapy during the summer season, and, where necessary, using outpatient regimens particularly out of season) for the care of insect venom allergy patients during the COVID-19 pandemic

    Subcutaneous Immunotherapy with a Depigmented Polymerized Birch Pollen Extract – A New Therapeutic Option for Patients with Atopic Dermatitis

    Get PDF
    Background: Birch pollen is an important outdoor allergen able to aggravate symptoms in atopic dermatitis (AD). Specific immunotherapy (SIT), an established procedure for allergic airway diseases, might also represent an attractive therapeutic option for the causal treatment of allergen-triggered cutaneous symptoms in these patients. Studies with house dust mite SIT have already shown beneficial effects in AD patients, whereas the safety and efficacy of SIT with birch pollen extract in AD patients have not been studied so far. The aim of this study was to evaluate for the first time the safety and efficacy of SIT with a depigmented polymerized birch pollen extract in AD patients. Methods: Fifty-five adult patients with moderate-to-severe AD and clinically relevant sensitization to birch pollen received SIT for 12 weeks. SIT was continued during birch pollen season. The assessment of safety, the total SCORAD value, and the Dermatology Life Quality Index (DLQI) were evaluated. Results: The median total SCORAD value was reduced by 34% (p < 0.001) during the course of treatment and the mean DLQI improved by 49% (p < 0.001) despite strong simultaneous birch pollen exposure. Eight patients (14.5%) developed systemic reactions and 19 patients (34.5%) developed local reactions which were of mild intensity in most cases. No patient discontinued the study prematurely due to adverse drug reactions. Coseasonal treatment was well tolerated. Conclusion: SIT with a depigmented polymerized birch pollen extract leads to significant improvement of the SCORAD value and the DLQI in patients suffering from moderate-to-severe AD sensitized to birch pollen.Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich

    Urticaria: Collegium Internationale Allergologicum (CIA) Update 2020.

    Get PDF
    This update on chronic urticaria (CU) focuses on the prevalence and pathogenesis of chronic spontaneous urticaria (CSU), the expanding spectrum of patient-reported outcome measures (PROMs) for assessing CU disease activity, impact, and control, as well as future treatment options for CU. This update is needed, as several recently reported findings have led to significant advances in these areas. Some of these key discoveries were first presented at past meetings of the Collegium Internationale Allergologicum (CIA). New evidence shows that the prevalence of CSU is geographically heterogeneous, high in all age groups, and increasing. Several recent reports have helped to better characterize two endotypes of CSU: type I autoimmune (or autoallergic) CSU, driven by IgE to autoallergens, and type IIb autoimmune CSU, which is due to mast cell (MC)-targeted autoantibodies. The aim of treatment in CU is complete disease control with absence of signs and symptoms as well as normalization of quality of life (QoL). This is best monitored by the use of an expanding set of PROMs, to which the Angioedema Control Test, the Cholinergic Urticaria Quality of Life Questionnaire, and the Cholinergic Urticaria Activity Score have recently been added. Current treatment approaches for CU under development include drugs that inhibit the effects of signals that drive MC activation and accumulation, drugs that inhibit intracellular pathways of MC activation and degranulation, and drugs that silence MCs by binding to inhibitory receptors. The understanding, knowledge, and management of CU are rapidly increasing. The aim of this review is to provide physicians who treat CU patients with an update on where we stand and where we will go. Many questions and unmet needs remain to be addressed, such as the development of routine diagnostic tests for type I and type IIb autoimmune CSU, the global dissemination and consistent use of PROMs to assess disease activity, impact, and control, and the development of more effective and well-tolerated long-term treatments for all forms of CU
    • …
    corecore