48 research outputs found
Prevalence of Campylobacter in a turkey production facility
Frequency of detection was monitored in three flocks of turkeys from May, 2000 to March 2001. The effect of time was considered for hens in flocks 1 and 2, and the effect of time, gender, and litter (fresh or used) was determined for flock 3. Poults, poult-box liners, waterers, and fecal droppings were monitered throughout production for the presence of Campylobacter using Campy-Cefex agar incubated at 42°C under microaerophilic conditions (85% N2, 10% CO2, and 5% O2). Peak colonization occurred near 3 weeks of production. Frequency of Campylobacter isolation from bird sources paralleled isolation from waterers. Frequency of detection from birds placed originally on used litter was significantly lower than detection from birds placed originally on fresh litter (2 v. 58%). Gender did not affect rate of detection. Controls to minimize peak colonization at 3 weeks and appropriate litter management are opportunities to reduce the level of this organism in turkeys
Assessing Air Velocity Distribution in Three Sizes of Commercial Broiler Houses During Tunnel Ventilation
Convective cooling is a critical management strategy for maintaining an environment that promotes production efficiency, thermal comfort, and animal well-being in commercial broiler houses. Variations in house size, design, and equipment configuration contribute greatly to the air velocity distribution within the facility. This study assessed total airflow, air velocity distribution, and quantified the floor area in three facilities experiencing insufficient air velocity for maintenance of production efficiency, thermal comfort, and animal well-being. Test facility 1 was an 18.3 x 170.7 m solid side-wall broiler house, test facility 2 was a 15.24 x 144.8 m solid side-wall broiler house, and test facility 3 was a 12.19 x 121.9 m curtain side-wall broiler house. Total airflow of each facility, measured with a Fan Assessment and Numeration System, was 512,730, 389,495, and 329,270 m3 h-1 for test facilities 1, 2, and 3, respectively. Air velocity distribution patterns were characterized in each house with a Scalable Environment Assessment System (SEAS) and spatial statistics. The air velocity distributions within the test facilities were variable, with notable maxima immediately downstream of the tunnel inlets, which serve as a well-defined vena contracta, and local minima near the leading end of the evaporative pads and the exhaust fans. Equipment within the facilities had an impact on the air velocity distribution by creating reduced cross-sectional areas that resulted in localized increases in air velocity. The percentage of total bird-level floor area in each facility experiencing air velocities below 1.5 m s-1 was 14.3%, 20.7%, and 10.0% for test facilities 1, 2, and 3, respectively. The effective design velocity (Ved) was calculated from total airflow using the measured building cross-sectional area. The Ved measured 2.97, 2.45, and 2.34 m s-1 for test facilities 1, 2, and 3, respectively. Mean cross-sectional air velocity (Vcs) was calculated from SEAS data and normalized using each facility‘s Ved to account for differences in building size for comparison. Test facility 1, the largest of the three houses, generated substantially higher Vcs/Ved than test facilities 2 and 3. Test facilities 2 and 3 maintained a larger proportion of Vcs above Ved than test facility 1. Test facility 1 showed 26.5% of the total house length below Ved, while test facilities 2 and 3 had only 20.8% and 17.5%, respectively, of the total house length below Ved. The lower-velocity regions were due to the length of the evaporative cooling pad inlet and the use of tunnel doors, and the exhaust fan placement on the side-walls in test facility 1 created an additional pronounced low-velocity area. Placement of tunnel ventilation fans on the end-wall of the facility, rather than the side-wall, eliminated the low-velocity region at the exhaust end of the facility. Modifications to current practices for broiler production facility construction and evaporative cooling pad inlet installation would be required to minimize the low-velocity region at the inlet end of these facilities. Consideration of house width and physical arrangement of the air inlets, tunnel fans, and internal equipment are critical for improving the uniformity of air velocity in commercial broiler houses
Effect of Measurement Density on Characterizing Air Velocity Distribution in Commercial Broiler Houses
Increasing air velocity of tunnel ventilation systems in commercial broiler facilities improves production efficiency. As a consequence, many housing design specifications require a minimum air velocity in the house. Air velocities are typically assessed with a hand-held anemometer at random locations, rather than systematic traverses. Simultaneous measurement of air velocity at multiple locations in the facility would provide a more accurate estimation of air velocity distribution. The objective of this study was to assess the effect of measurement density on accuracy of estimating air velocity distribution in a tunnel-ventilated broiler production facility. An array of 40 anemometers was placed on a series of transverse cross-sections in a commercial broiler production facility with curtain sidewalls (no birds present) measuring 12.8 × 121.9 m. The house was equipped with ten 121.9 cm exhaust fans. Cross-sectional air velocity measurements were taken along the length of the house in increments of 3.05 m axially. Data were sampled at 1 Hz for 2 min; three 2 min subsamples were obtained at each cross-section. Horizontal plane air velocity distribution maps were generated using 12.19, 6.10, and 3.05 m axial measurement distances between cross-sections at 0.46 m above the litter. Vertical plane air velocity distribution maps were created using 10, 20, and 40 symmetrical sampling points from the original data set. Cross-validation analysis revealed that higher spatial measurement density in the axial direction yielded a higher correlation between observed and predicted values (79%) and lower mean squared prediction error (MSPE; 0.10 m s-1) when compared to decreased sampling densities. Vertical cross-section measurement density comparisons showed a reduction in MSPE and an increase in correlation between observed and predicted values at higher sampling densities in all cases tested excluding one. In the case of improved interpolation results with fewer measurement points, the cross-section demonstrated high variation in air velocity and velocity values being very low. Axial cross-sectional measurement distances of =3.05 m and vertical plane measurement densities of =40 measurement points should be used to accurately characterize air velocity distribution in a 12.8 × 121.9 m broiler production facility. Although more sensors and time are required to collect 40-point cross-sections at 3.05 m, the improved visualization allows better identification of distribution effects caused by equipment placement in the facility
Organic Acids and Potential for Modifying the Avian Gastrointestinal Tract and Reducing Pathogens and Disease
Recently, antibiotics have been withdrawn from some poultry diets; leaving the birds at risk for increased incidence of dysbacteriosis and disease. Furthermore, mortalities occurring from disease contribute between 10 to 20% of production cost in developed countries. Currently, numerous feed supplements are being proposed as effective antibiotic alternatives in poultry diets, such as prebiotics, probiotics, acidic compounds, competitive exclusion products, herbs, essential oils, and bacteriophages. However, acidic compounds consisting of organic acids show promise as antibiotic alternatives. Organic acids have demonstrated the capability to enhance poultry performance by altering the pH of the gastrointestinal tract (GIT) and consequently changing the composition of the microbiome. In addition, organic acids, by altering the composition of the microbiome, protect poultry from pH-sensitive pathogens. Protection is further provided to poultry by the ability of organic acids to potentially enhance the morphology and physiology of the GIT and the immune system. Thus, the objective of the current review is to provide an understanding of the effects organic acids have on the microbiome of poultry and the effect those changes have on the prevalence of pathogens and diseases in poultry. From data reviewed, it can be concluded that the efficacy of organic acids on shifting microbiome composition is limited to the time of administration, the composition of the organic acid product, and the current health conditions of poultry
A systematic review of progranulin concentrations in biofluids in over 7,000 people—assessing the pathogenicity of GRN mutations and other influencing factors
Background: Pathogenic heterozygous mutations in the progranulin gene (GRN) are a key cause of frontotemporal dementia (FTD), leading to significantly reduced biofluid concentrations of the progranulin protein (PGRN). This has led to a number of ongoing therapeutic trials aiming to treat this form of FTD by increasing PGRN levels in mutation carriers. However, we currently lack a complete understanding of factors that affect PGRN levels and potential variation in measurement methods. Here, we aimed to address this gap in knowledge by systematically reviewing published literature on biofluid PGRN concentrations. Methods: Published data including biofluid PGRN concentration, age, sex, diagnosis and GRN mutation were collected for 7071 individuals from 75 publications. The majority of analyses (72%) had focused on plasma PGRN concentrations, with many of these (56%) measured with a single assay type (Adipogen) and so the influence of mutation type, age at onset, sex, and diagnosis were investigated in this subset of the data. Results: We established a plasma PGRN concentration cut-off between pathogenic mutation carriers and non-carriers of 74.8 ng/mL using the Adipogen assay based on 3301 individuals, with a CSF concentration cut-off of 3.43 ng/mL. Plasma PGRN concentration varied by GRN mutation type as well as by clinical diagnosis in those without a GRN mutation. Plasma PGRN concentration was significantly higher in women than men in GRN mutation carriers (p = 0.007) with a trend in non-carriers (p = 0.062), and there was a significant but weak positive correlation with age in both GRN mutation carriers and non-carriers. No significant association was seen with weight or with TMEM106B rs1990622 genotype. However, higher plasma PGRN levels were seen in those with the GRN rs5848 CC genotype in both GRN mutation carriers and non-carriers. Conclusions: These results further support the usefulness of PGRN concentration for the identification of the large majority of pathogenic mutations in the GRN gene. Furthermore, these results highlight the importance of considering additional factors, such as mutation type, sex and age when interpreting PGRN concentrations. This will be particularly important as we enter the era of trials for progranulin-associated FTD.</p
New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism.
Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood. Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes and a second variant, near CCNL1, with no obvious link to adult traits. In an expanded genome-wide association meta-analysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome-wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism
The trans-ancestral genomic architecture of glycemic traits
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
Recommended from our members
Publisher Correction: Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability.
A Correction to this paper has been published: https://doi.org/10.1038/s41467-021-21276-3</jats:p
Hepatic α-aminoadipate δ-semialdehyde synthase appears to be post-translationally regulated in mouse and chicken.
Lysine is the limiting amino acid in many animal diets. Improving the efficiency of lysine use for protein synthesis can reduce feed cost and potentially the nitrogen and phosphorus output of agricultural production systems. Lysine not used for protein synthesis is oxidized, primarily by lysine α-ketoglutarate reductase (LKR). The mechanism(s) responsible for alterations in hepatic LKR activity in rodents and poultry are still unclear. For this reason, studies in both species were conducted to evaluate possible mechanisms responsible for alterations of LKR activity. Mice were fed either a high or adequate protein diet. Mice fed the high protein diet had a greater (P\u3c0.05) LKR activity. Mice fed high and adequate protein diets for 8 days showed a significant difference (P\u3c0.05) in aminoadipate semialdehyde synthase (AASS) mRNA expression in 2 out of the 4 replicates. However, no difference (P\u3e0.1) in AASS protein abundance was detected in any study. Chickens were fed either a lysine deficient or lysine adequate diet. Neither LKR nor L-amino acid oxidase (AAOX) activities were significantly different between the two treatments; however, there was a tendency for both LKR (P\u3e0.1) and AAOX (P=0.08) activities to be lower in chicks fed the lysine-deficient diet. Chicks fed lysine-deficient diet had greater (P\u3c0.05) AASS and tended (P=0.09) to have greater lysyl oxidase mRNA expression than chicks fed a lysine-adequate diet. AAOX mRNA expression was similar to the AAOX activity and tended (P=0.1) to decrease in chicks fed the lysine-deficient diet. In chicks consuming the lysine-deficient diets, the increased AASS mRNA was not translated into greater AASS protein abundance. The results in both mice and chickens support a model in which post-translational modification of LKR regulates its activity