58 research outputs found

    An Evaluation of the Privacy Policies of Library Vendors

    Get PDF
    This project aims to evaluate the degree to which various library vendors are taking the privacy of library users into account. In 2018, the Library Freedom Project put together a Vendor Privacy Scorecard analyzing the privacy policies of twelve major vendors, but no follow-up study seems to have been conducted by the Project since then. I intend to conduct my own updated privacy policy audit of these and other significant library vendors (particularly those used by NC LIVE) to gain a better understanding of how well these vendors are accounting for and protecting the privacy of individual library users today. This largely involves an analysis (based on the criteria used by the Library Freedom Project and the guidelines found in the ALA Library Privacy Checklist for Vendors) of vendors’ posted privacy policies. In my presentation, I will discuss the results of my analysis

    Sorting by LC Call Number in Excel

    Get PDF
    Sorting by Library of Congress (LC) call number in Excel is problematic because Excel does not treat LC call numbers as numbers. In practice, this means that Excel sorts LC call numbers based on each successive digit in the call number rather than the overall value of each call number. (for example, a call number beginning with PS507 would be sorted after one beginning with PS4998 in a default Excel sort). In this presentation, I demonstrate one method for accurately sorting by LC call number in Excel

    If You Only Knew the Power of the Dark Web! Finding Intellectual Freedom, Privacy, and Anonymity Online

    Get PDF
    While the dark web attracts largely negative and sensationalistic headlines as a haven for criminality, it (and the tools used to access it) also offers knowledgeable users the ability to surf the web free of government surveillance and social media/marketing tracking and to exercise free speech in an environment of virtual anonymity. As such, the dark web supports librarians’ values regarding privacy and intellectual freedom. This presentation will give librarians a realistic look at both the positive and negative aspects of the dark web, provide them with examples of the types of users who may want to explore or make use of the dark web, and introduce them to dark web tools that can be used to surf even the surface web anonymously

    The Australian diabetes, obesity and lifestyle study (AusDiab)- methods and response rates

    Full text link
    The Australian Diabetes, Obesity and Lifestyle Study (AusDiab) addresses the urgent need for data on diabetes prevalence, risk factors and associated conditions in Australia. Here we describe the methods used and the response rates obtained. AusDiab was a population-based cross-sectional survey of national diabetes mellitus prevalence and associated risk factors in people aged ⩾25 years, conducted between May 1999 and December 2000 in the six states and the Northern Territory of Australia. The study involved an initial household interview, followed by a biomedical examination that included an oral glucose tolerance test (OGTT), standard anthropometric tests, blood pressure measurements and the administration of questionnaires. Of the 20 347 eligible people (aged ⩾25 years and resident at the address for ⩾6 months) who completed a household interview, 11 247 (55.3%) attended for the biomedical examination. Of those who completed the biomedical examination 55.1% were female. Comparisons with the 1998 Australian population estimates showed that younger age responders were under-represented at the biomedical examination, while the middle-aged and older age groups were over-represented. Weighting of the AusDiab data for age and gender have corrected for this bias. AusDiab, which is the largest national diabetes prevalence study undertaken in a developed nation to have used an OGTT, provides a valuable national resource for the study of the prevalence and possible causes of diabetes, as well as identifying possible risk factors that may lead to diabetes. Furthermore, it generates the baseline data for a prospective 5-year cohort study. The data will be important for national and regional public health and lifestyle education and health promotion programs

    Recent acquisition of Helicobacter pylori by Baka Pygmies

    Get PDF
    Both anatomically modern humans and the gastric pathogen Helicobacter pylori originated in Africa, and both species have been associated for at least 100,000 years. Seven geographically distinct H. pylori populations exist, three of which are indigenous to Africa: hpAfrica1, hpAfrica2, and hpNEAfrica. The oldest and most divergent population, hpAfrica2, evolved within San hunter-gatherers, who represent one of the deepest branches of the human population tree. Anticipating the presence of ancient H. pylori lineages within all hunter-gatherer populations, we investigated the prevalence and population structure of H. pylori within Baka Pygmies in Cameroon. Gastric biopsies were obtained by esophagogastroduodenoscopy from 77 Baka from two geographically separated populations, and from 101 non-Baka individuals from neighboring agriculturalist populations, and subsequently cultured for H. pylori. Unexpectedly, Baka Pygmies showed a significantly lower H. pylori infection rate (20.8%) than non-Baka (80.2%). We generated multilocus haplotypes for each H. pylori isolate by DNA sequencing, but were not able to identify Baka-specific lineages, and most isolates in our sample were assigned to hpNEAfrica or hpAfrica1. The population hpNEAfrica, a marker for the expansion of the Nilo-Saharan language family, was divided into East African and Central West African subpopulations. Similarly, a new hpAfrica1 subpopulation, identified mainly among Cameroonians, supports eastern and western expansions of Bantu languages. An age-structured transmission model shows that the low H. pylori prevalence among Baka Pygmies is achievable within the timeframe of a few hundred years and suggests that demographic factors such as small population size and unusually low life expectancy can lead to the eradication of H. pylori from individual human populations. The Baka were thus either H. pylori-free or lost their ancient lineages during past demographic fluctuations. Using coalescent simulations and phylogenetic inference, we show that Baka almost certainly acquired their extant H. pylori through secondary contact with their agriculturalist neighbors

    The Occurrence of Photorhabdus-Like Toxin Complexes in Bacillus thuringiensis

    Get PDF
    Recently, genomic sequencing of a Bacillus thuringiensis (Bt) isolate from our collection revealed the presence of an apparent operon encoding an insecticidal toxin complex (Tca) similar to that first described from the entomopathogen Photorhabdus luminescens. To determine whether these genes are widespread among Bt strains, we screened isolates from the collection for the presence of tccC, one of the genes needed for the expression of fully functional toxin complexes. Among 81 isolates chosen to represent commonly encountered biochemical phenotypes, 17 were found to possess a tccC. Phylogenetic analysis of the 81 isolates by multilocus sequence typing revealed that all the isolates possessing a tccC gene were restricted to two sequence types related to Bt varieties morrisoni, tenebrionis, israelensis and toumanoffi. Sequencing of the ∼17 kb tca operon from two isolates representing each of the two sequence types revealed >99% sequence identity. Optical mapping of DNA from Bt isolates representing each of the sequence types revealed nearly identical plasmids of ca. 333 and 338 kbp, respectively. Selected isolates were found to be toxic to gypsy moth larvae, but were not as effective as a commercial strain of Bt kurstaki. Some isolates were found to inhibit growth of Colorado potato beetle. Custom Taqman® relative quantitative real-time PCR assays for Tc-encoding Bt revealed both tcaA and tcaB genes were expressed within infected gypsy moth larvae

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP

    A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders.

    Get PDF
    Inherited bleeding, thrombotic, and platelet disorders (BPDs) are diseases that affect ∼300 individuals per million births. With the exception of hemophilia and von Willebrand disease patients, a molecular analysis for patients with a BPD is often unavailable. Many specialized tests are usually required to reach a putative diagnosis and they are typically performed in a step-wise manner to control costs. This approach causes delays and a conclusive molecular diagnosis is often never reached, which can compromise treatment and impede rapid identification of affected relatives. To address this unmet diagnostic need, we designed a high-throughput sequencing platform targeting 63 genes relevant for BPDs. The platform can call single nucleotide variants, short insertions/deletions, and large copy number variants (though not inversions) which are subjected to automated filtering for diagnostic prioritization, resulting in an average of 5.34 candidate variants per individual. We sequenced 159 and 137 samples, respectively, from cases with and without previously known causal variants. Among the latter group, 61 cases had clinical and laboratory phenotypes indicative of a particular molecular etiology, whereas the remainder had an a priori highly uncertain etiology. All previously detected variants were recapitulated and, when the etiology was suspected but unknown or uncertain, a molecular diagnosis was reached in 56 of 61 and only 8 of 76 cases, respectively. The latter category highlights the need for further research into novel causes of BPDs. The ThromboGenomics platform thus provides an affordable DNA-based test to diagnose patients suspected of having a known inherited BPD.This study, including the enrollment of cases, sequencing, and analysis received support from the National Institute for Health Research (NIHR) BioResource–Rare Diseases. The NIHR BioResource is funded by the NIHR (http://www.nihr.ac.uk). Research in the Ouwehand Laboratory is also supported by grants from Bristol-Myers Squibb, the British Heart Foundation, the British Society of Haematology, the European Commission, the MRC, the NIHR, and the Wellcome Trust; the laboratory also receives funding from National Health Service Blood and Transplant (NHSBT). The clinical fellows received funding from the MRC (C.L. and S.K.W.); the NIHR–Rare Diseases Translational Research Collaboration (S. Sivapalaratnam); and the British Society for Haematology and National Health Service Blood and Transplant (T.K.B.).This is the author accepted manuscript. The final version is available from American Society of Hematology via http://dx.doi.org/10.1182/blood-2015-12-688267

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore