152 research outputs found
Evaluation of a novel nanocrystalline hydroxyapatite paste Ostim® in comparison to Alpha-BSM® - more bone ingrowth inside the implanted material with Ostim® compared to Alpha BSM®
<p>Abstract</p> <p>Background</p> <p>The purpose of this study was to evaluate the performance a newly developed nanocrystalline hydroxyapatite, OSTIM<sup>® </sup>following functional implantation in femoral sites in thirty-eight sheep for 1, 2 or 3 months. Ostim<sup>® </sup>35 was compared to an established calcium phosphate, Alpha BSM<sup>®</sup>.</p> <p>Methods</p> <p>Biomechanical testing, μ-CT analysis, histological and histomorphological analyses were conducted to compare the treatments including evaluation of bone regeneration level, material degradation, implant biomechanical characteristics.</p> <p>Results</p> <p>The micro-computed tomography (μCT) analysis and macroscopic observations showed that Ostim<sup>® </sup>seemed to diffuse easily particularly when the defects were created in a cancellous bone area. Alpha BSM<sup>® </sup>remained in the defect.</p> <p>The performance of Ostim was good in terms of mechanical properties that were similar to Alpha BSM<sup>® </sup>and the histological analysis showed that the bone regeneration was better with Ostim<sup>® </sup>than with Alpha BSM<sup>®</sup>. The histomorphometric analysis confirmed the qualitative analysis and showed more bone ingrowth inside the implanted material with Ostim<sup>® </sup>when compared to Alpha BSM <sup>® </sup>at all time points.</p> <p>Conclusions</p> <p>The successful bone healing with osseous consolidation verifies the importance of the nanocrystalline hydroxyapatite in the treatment of metaphyseal osseous volume defects in the metaphyseal spongiosa.</p
Bone regeneration in surgically created defects filled with autogenous bone: an epifluorescence microscopy analysis in rats
Although the search for the ideal bone substitute has been the focus of a large number of studies, autogenous bone is still the gold standard for the filling of defects caused by pathologies and traumas, and mainly, for alveolar ridge reconstruction, allowing the titanium implants installation. OBJECTIVES: The aim of this study was to evaluate the dynamics of autogenous bone graft incorporation process to surgically created defects in rat calvaria, using epifluorescence microscopy. MATERIAL AND METHODS: Five adult male rats weighing 200-300 g were used. The animals received two 5-mm-diameter bone defects bilaterally in each parietal bone with a trephine bur under general anesthesia. Two groups of defects were formed: a control group (n=5), in which the defects were filled with blood clot, and a graft group (n=5), in which the defects were filled with autogenous bone block, removed from the contralateral defect. The fluorochromes calcein and alizarin were applied at the 7th and 30th postoperative days, respectively. The animals were killed at 35 days. RESULTS: The mineralization process was more intense in the graft group (32.09%) and occurred mainly between 7 and 30 days, the period labeled by calcein (24.66%). CONCLUSIONS: The fluorochromes showed to be appropriate to label mineralization areas. The interfacial areas between fluorochrome labels are important sources of information about the bone regeneration dynamics
Effects of silica addition on the chemical, mechanical and biological properties of a new α-Tricalcium Phosphate/Tricalcium Silicate Cement
The addition of tricalcium silicate (C3S) to apatite cements results in an increase of bioactivity and improvement in the mechanical properties. However, adding large amounts raises the local pH at early stages, which retards the precipitation of hydroxyapatite and produces a loss of mechanical strength. The introduction of Pozzolanic materials in cement pastes could be an effective way to reduces basicity and enhance their mechanical resistance; thus, the effect of adding silica on the chemical, mechanical and biological properties of α-tricalcium phosphate/C3S cement was studied. Adding silica produces a reduction in the early pH and a decrease in setting times; nevertheless, the presence of more calcium silicate hydrate (C-S-H) delays the growth of hydroxyapatite crystals and consequently, reduces early compressive strength. The new formulations show a good bioactivity, but higher cytotoxicity than traditional cements and additions higher than 2.5% of SiO2 cause a lack of mechanical strength and an elevated degradability
Gi/o-protein coupled receptors in the aging brain
Cells translate extracellular signals to regulate processes such as differentiation, metabolism and proliferation, via transmembranar receptors. G protein-coupled receptors (GPCRs) belong to the largest family of transmembrane receptors, with over 800 members in the human species. Given the variety of key physiological functions regulated by GPCRs, these are main targets of existing drugs. During normal aging, alterations in the expression and activity of GPCRs have been observed. The central nervous system (CNS) is particularly affected by these alterations, which results in decreased brain functions, impaired neuroregeneration, and increased vulnerability to neuropathologies, such as Alzheimer's and Parkinson diseases. GPCRs signal via heterotrimeric G proteins, such as Go, the most abundant heterotrimeric G protein in CNS. We here review age-induced effects of GPCR signaling via the Gi/o subfamily at the CNS. During the aging process, a reduction in protein density is observed for almost half of the Gi/o-coupled GPCRs, particularly in age-vulnerable regions such as the frontal cortex, hippocampus, substantia nigra and striatum. Gi/o levels also tend to decrease with aging, particularly in regions such as the frontal cortex. Alterations in the expression and activity of GPCRs and coupled G proteins result from altered proteostasis, peroxidation of membranar lipids and age-associated neuronal degeneration and death, and have impact on aging hallmarks and age-related neuropathologies. Further, due to oligomerization of GPCRs at the membrane and their cooperative signaling, down-regulation of a specific Gi/o-coupled GPCR may affect signaling and drug targeting of other types/subtypes of GPCRs with which it dimerizes. Gi/o-coupled GPCRs receptorsomes are thus the focus of more effective therapeutic drugs aiming to prevent or revert the decline in brain functions and increased risk of neuropathologies at advanced ages.This work was supported by Fundação para a Ciência e
Tecnologia, Centro 2020 and Portugal 2020, the COMPETE
program, QREN, and the European Union (FEDER program)
via the GoBack project (PTDC/CVT-CVT/32261/2017),
the pAGE program (Centro-01-0145-FEDER-000003), and
Institute for Biomedicine iBiMED (UID/BIM/04501/2013;
UID/BIM/04501/2019).publishe
- …