1,241 research outputs found
Material Properties Measurements for Selected Materials
Hugoniot equation of state measurements were made on Coconino sandstone, Vacaville basalt, Kaibab limestone, Mono Crater, pumice and Zelux (a polycarbonate resin) for pressures to 2 Mb. A single data point was obtained for fused quartz at 1.6 Mb. In addition to the hugoniot studies, the uniaxial compressive stress behavior of Vacaville basalt and Zelux was investigated at strain rates from about 10(exp -5)/sec to 10(exp 3)/second. The data presented include the stress - strain relations as a function of strain rate for these two materials
Real time simulation using position sensing
An interactive exercise system including exercise equipment having a resistance system, a speed sensor, a controller that varies the resistance setting of the exercise equipment, and a playback device for playing pre-recorded video and audio. The controller, operating in conjunction with speed information from the speed sensor and terrain information from media table files, dynamically varies the resistance setting of the exercise equipment in order to simulate varying degrees of difficulty while the playback device concurrently plays back the video and audio to create the simulation that the user is exercising in a natural setting such as a real-world exercise course
Statistical relational learning with soft quantifiers
Quantification in statistical relational learning (SRL) is either existential or universal, however humans might be more inclined to express knowledge using soft quantifiers, such as ``most'' and ``a few''. In this paper, we define the syntax and semantics of PSL^Q, a new SRL framework that supports reasoning with soft quantifiers, and present its most probable explanation (MPE) inference algorithm. To the best of our knowledge, PSL^Q is the first SRL framework that combines soft quantifiers with first-order logic rules for modelling uncertain relational data. Our experimental results for link prediction in social trust networks demonstrate that the use of soft quantifiers not only allows for a natural and intuitive formulation of domain knowledge, but also improves the accuracy of inferred results
The interactive effects of press/pulse intensity and duration on regime shifts at multiple scales
Citation: Ratajczak, Z., D'Odorico, P., Collins, S. L., Bestelmeyer, B. T., Isbell, F. I., & Nippert, J. B. (2017). The interactive effects of press/pulse intensity and duration on regime shifts at multiple scales. Ecological Monographs, 87(2), 198-218. doi:10.1002/ecm.1249Regime shifts are difficult-to-reverse transitions that occur when an ecosystem reorganizes around a new set of self-reinforcing feedbacks. Regime shifts are predicted to occur when the intensity of some exogenous driver variable, such as temperature, annual harvest rate, or nutrient addition rate, gradually approaches and crosses a threshold value, initiating a transition to an alternative state. However, many driver variables now change rapidly as presses or pulses, not gradually, requiring new conceptual frameworks for understanding and predicting regime shifts. We argue that identifying and controlling regime shifts in response to presses and pulses will require a greater focus on the duration, not just the intensity, of changes in driver variables. In ecosystems with slower dynamics, transitions to an alternative state can take years to decades and as a result, a driver press with an intensity capable of resulting in a regime shift over long time spans may fail to cause a regime shift when applied for shorter durations. We illustrate these ideas using simulations of local-scale alternative stable state models and preliminary evidence from long-term grazing and eutrophication experiments. The simulations also suggest that small changes in the duration of driver presses or pulses can determine whether an ecosystem recovers to its original state. These insights may extend to larger scales. In spatially extended simulations that included patchiness, spatial heterogeneity, and spatial connectivity, all patches recovered to their original state after shorter presses. However, once press duration exceeded a threshold, growing proportions of the landscape shifted to an alternative state as press duration increased. We observed similar patchy transitions in a catchment-scale experiment that reinstated frequent fires approximately halfway through a regime shift from grassland to shrubland, initiated by fire suppression. In both the local-and larger-scale models, the threshold duration needed to elicit regime shifts decreased as press intensity increased or when factors counteracting regime shifts weakened. These multiple lines of evidence suggest that conceptualizing regime shifts as an interactive function of the intensity and duration of driver changes will increase understanding of the varying effects of driver presses, pulses, and cycles on ecosystem dynamics
On embeddings of CAT(0) cube complexes into products of trees
We prove that the contact graph of a 2-dimensional CAT(0) cube complex of maximum degree can be coloured with at most
colours, for a fixed constant . This implies
that (and the associated median graph) isometrically embeds in the
Cartesian product of at most trees, and that the event
structure whose domain is admits a nice labeling with
labels. On the other hand, we present an example of a
5-dimensional CAT(0) cube complex with uniformly bounded degrees of 0-cubes
which cannot be embedded into a Cartesian product of a finite number of trees.
This answers in the negative a question raised independently by F. Haglund, G.
Niblo, M. Sageev, and the first author of this paper.Comment: Some small corrections; main change is a correction of the
computation of the bounds in Theorem 1. Some figures repaire
Seasonal effects on reconciliation in Macaca Fuscata Yakui
Dietary composition may have profound effects on the activity budgets, levelof food competition, and social behavior of a species. Similarly, in seasonally breeding species, the mating season is a period in which competition for mating partners increases, affecting amicable social interactions among group members. We analyzed the importance of the mating season and of seasonal variations in dietary composition and food competition on econciliation
in wild female Japanese macaques (Macaca fuscata yakui) on Yakushima Island, Japan. Yakushima macaques are appropriate subjects because they are seasonal breeders and their dietary composition significantly changes among the seasons. Though large differences occurred between the summer months and the winter and early spring months in activity budgets and the consumption of the main food sources, i.e., fruits, seeds, and leaves, the level
of food competition and conciliatory tendency remained unaffected. Conversely,conciliatory tendency is significantly lower during the mating season than in the nonmating season. Moreover, conciliatory tendency is lower when 1 or both female opponents is in estrous than when they are not. Thus the mating season has profound effects on reconciliation, whereas seasonal changes in activity budgets and dietary composition do not. The detrimental effects of the mating season on female social relationships and reconciliation may be due to the importance of female competition for access to male partners in multimale, multifemale societies
Soft quantification in statistical relational learning
We present a new statistical relational learning (SRL) framework that supports reasoning with soft quantifiers, such as "most" and "a few." We define the syntax and the semantics of this language, which we call , and present a most probable explanation inference algorithm for it. To the best of our knowledge, is the first SRL framework that combines soft quantifiers with first-order logic rules for modelling uncertain relational data. Our experimental results for two real-world applications, link prediction in social trust networks and user profiling in social networks, demonstrate that the use of soft quantifiers not only allows for a natural and intuitive formulation of domain knowledge, but also improves inference accuracy
Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes
Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change
Full vs Partial Market Coverage with Minimum Quality Standards
The consequences of the adoption of quality standards on the extent of market coverage is investigated by modelling a game between regulator and low-quality firm in a vertically differentiated duopoly. The game has a unique equilibrium in the most part of the parameter range. There exists a non-negligible range where the game has no equilibrium in pure strategies. This result questions the feasibility of MQS regulation when firms endogenously determine market coverage
- …
