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Abstract. Quantification in statistical relational learning (SRL) is either existen-
tial or universal, however humans might be more inclined to express knowledge
using soft quantifiers, such as “most” and “a few”. In this paper, we define the
syntax and semantics of PSLQ, a new SRL framework that supports reasoning
with soft quantifiers, and present its most probable explanation (MPE) inference
algorithm. To the best of our knowledge, PSLQ is the first SRL framework that
combines soft quantifiers with first-order logic rules for modeling uncertain rela-
tional data. Our experimental results for link prediction in social trust networks
demonstrate that the use of soft quantifiers not only allows for a natural and in-
tuitive formulation of domain knowledge, but also improves the accuracy of in-
ferred results.

1 Introduction

Statistical relational learning (SRL) has become a popular paradigm for knowledge
representation and inference in application domains with uncertain data that is of a
complex, relational nature. A variety of different SRL frameworks has been developed
over the last decade, based on ideas from probabilistic graphical models, first-order
logic, and programming languages (see e.g., [20, 24, 10]). Quantification in first-order
logic is traditionally either existential (∃) or universal (∀). Given the strong roots of the
existing SRL frameworks in (a subset of) first-order logic as a knowledge representation
language, it is no surprise that these are the two kinds of quantifications that are known
and commonly used in SRL, even though in many application scenarios humans might
be more inclined to express knowledge using softer quantifiers, such as most and a few.

For example, in models for social networks it is common to include the knowledge
that the behaviour, beliefs, and preferences of friends all influence each other. How
this information can be incorporated depends on the expressivity of the model. In a
traditional probabilistic model, a dependency might be included for each pair of friends
(corresponding to a universally quantified rule), each expressing the knowledge that it
is more probable that two friends share a trait in common. An often cited example in
SRL contexts describing smoking behaviour among friends is ∀X∀Y Friends(X,Y )→
(Smokes(X) ↔ Smokes(Y )) [24]. This formula states that if two people are friends,
then either both of them smoke or neither of them. In this case, the probability that a
person smokes scales smoothly with the number of friends that smoke. However, many
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traits of interest might not behave this way, but instead exhibit “tipping points” in which
having a trait only becomes more probable once most or some of one’s friends have that
trait (e.g., smoking behaviour). Expressing this dependency requires a soft quantifier,
which none of the existing SRL frameworks allow.

What sets soft quantifiers apart from universal and existential quantification is that
expressions that contain them are often true to a certain degree, as opposed to either
being true or false. Indeed, the degree to which a statement such as “most of Bob’s
friends smoke” is true, increases with the percentage of smokers among Bob’s friends.
This increase is not necessarily linear; in fact, a common approach to compute the truth
degree of soft quantified expressions is to map percentages to the scale [0, 1] using non-
decreasing piecewise linear functions [29]. Previous SRL work (e.g., [19, 14, 22]) has
considered hard quantifiers with thresholds such as at least k. Soft quantifiers, on the
other hand, do not impose such hard thresholds but allow smooth, gradual transitions
from falsehood to truth.

Furthermore, the dependence of predicted probabilities on population size in rela-
tional models such as Markov logic networks (MLNs) and relational logistic regression
is addressed in [21, 15]. Soft quantifiers not only provide the flexibility of modeling
complex relations, but their semantics also do not depend on the absolute population
size. Hence soft quantifiers allow us to learn a model for some population size and
apply the same model to another population size without the need for changes in the
model, e.g. without introducing auxiliary variables to control whether the population
size grows.

Many SRL applications could benefit from the availability of soft quantifiers. Col-
lective document classification, for instance, relies on rules such as ∀D∀E∀C(Cites(D,
E) ∧Class(D,C) → Class(E,C)) which expresses that if documents D and E are
linked (e.g., by citation), and D belongs to class C, then E belongs to C [2]. Soft quan-
tifiers would allow to classify a document based on most of its citing documents instead
of one citing document. Similarly, in collaborative filtering, one can rely on the pre-
ferred products of a user to infer the behaviour of a similar user, i.e., ∀U1∀U2∀J(Likes(
U1, J) ∧ Similar(U1, U2) → Likes(U2, J)) [2]. Using soft quantifiers would allow to
infer preferences of a user based on most of the behaviours of a similar user, or by
comparing one user with most of the users similar to him.

In this paper we present the first SRL framework that combines soft quantifiers with
first-order logic rules for modeling uncertain relational data. A brief overview of our
framework is presented in [9]. We start from probabilistic soft logic (PSL) [1], an exist-
ing SRL framework that defines templates for hinge-loss Markov random fields [2], and
extend it to a new framework which we call PSLQ. As is common in SRL frameworks,
in PSL a problem is defined by a set of logical rules using a finite set of atoms. However,
unlike other SRL frameworks whose atoms are Boolean, atoms in PSL can take con-
tinuous values in the interval [0, 1]. Intuitively, value 0 means false and value 1 means
true, while any value v ∈ [0, 1] represents a partial degree of truth. PSL has been used
in various domains with promising results, including trust propagation [12], drug-target
interaction prediction [8], knowledge graph identification [23], semantic textual similar-
ity computation [4] and sentiment analysis in a social network [27], among many others.
Reasoning with continuous values has also been addressed in fuzzyDL [5], however rea-
soning is not as efficient as in PSL. Furthermore, using quantifiers in probabilistic logic
is addressed in previous works with Boolean atoms, such as in [18, 3, 25], while in this
study we address the use of soft quantifiers for continuous atoms.

This paper makes three contributions. First, we introduce PSLQ, a new SRL frame-
work that supports reasoning with soft quantifiers, such as “most” and “a few”. Second,
because this expressivity pushes beyond the capabilities of PSL, we introduce new in-
ference and weight learning algorithms for PSLQ. Finally, as a proof of concept, we
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present a PSLQ model that more accurately predicts trust in social networks than the
current state-of-the-art approach.

2 PSLQ: PSL with Soft Quantifiers

Definition 1. An atom is an expression of the form p(a1, a2, . . . , an) where p is a pred-
icate symbol, and each argument a1, a2, . . . , an is either a constant or a variable. The
finite set of all possible substitutions of a variable to a constant for a particular variable
ai is called its domainDai . If all variables in p(a1, a2, . . . , an) are substituted by some
constant from their respective domain, then we call the resulting atom a ground atom.
We call ¬p(a1, a2, ..., an) a negated atom which is the negation of p(a1, a2, ..., an).

Definition 2. A quantifier expression is an expression of the form

Q(V, F1[V ], F2[V ]) (1)

where Q is a soft quantifier, and F1[V ] and F2[V ] are formulas containing the vari-
able V . A formula is an atom or a negation, conjunction or disjunction of formulas.
A grounded quantifier expression is obtained by instantiating all variables with con-
stants from their domains except for V .

Consider as an example the two formulas Knows(X,T ) and Trusts(X,T ), then
Most(T,Knows(X,T ), T rusts(X,T )) is a quantifier expression. By substitutingX with
Alice, we obtain the grounded quantifier expression:

Most(T,Knows(Alice, T ), T rusts(Alice, T )), which can be read as “Alice trusts
most of the people she knows”.

Definition 3. A PSLQ model consists of a collection of PSLQ rules. A PSLQ rule r is
an expression of the form:

λr : T1 ∧ T2 ∧ . . . ∧ Tk → H1 ∨H2 ∨ . . . ∨Hl (2)

where T1, T2, . . . , Tk, H1, H2, . . . , Hl are atoms, negated atoms, quantifier expressions
or negated quantifier expressions and λr ∈ R+ ∪ {∞} is the weight of the rule r. We
call T1∧T2∧ . . .∧Tk the body of r (rbody), and H1∨H2∨ . . .∨Hl the head of r (rhead).
Grounding a PSLQ rule means instantiating all the variables with constants from their
domain except for the variables V in quantifier expressions Q(V, F1[V ], F2[V ]).

Remark 1. A PSL model, i.e., a set of PSL rules, is a PSLQ model without quantifier
expressions. The first 9 rules in Table 1 are an example of a PSLQ model without quan-
tifier expressions, or a PSL model, while rules 10−14 in Table 1 are examples of PSLQ
rules with quantifier expressions.

An interpretation I is a mapping that associates a truth value I(s) ∈ [0, 1] to
each ground atom s. For example, I(Knows(Alice,Bob)) = 0.7 indicates that Alice
knows Bob to degree 0.7. The interpretation of PSLQ rules is based on Łukasiewicz
logic [16]. Conjunction∧ is interpreted by the Łukasiewicz t-norm (∧̃), disjunction∨ by
the Łukasiewicz t-conorm (∨̃), and negation ¬ by the Łukasiewicz negator (¬̃), which
are defined as follows. For m,n ∈ [0, 1] we have: m∧̃n = max(0,m + n − 1), m∨̃n =
min(m+ n, 1) and ¬̃m = 1−m. The ˜ indicates the relaxation over Boolean values. We
can extend the interpretation of atoms to more complex formulas in Łukasiewicz logic
as follows. Given an interpretation I , and φ1 and φ2 formulas, we have I(φ1 ∧ φ2) =
I(φ1) ∧̃ I(φ2), I(φ1 ∨ φ2) = I(φ1) ∨̃ I(φ2) and I(¬ φ1) = ¬̃ I(φ1) .

The interpretation of quantifier expressions in PSLQ relies on quantifier mappings.
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Fig. 1: Examples of quantifier mappings

Definition 4. A quantifier mapping Q̃ is a [0, 1] → [0, 1] mapping. If Q̃ is non-
decreasing and satisfies the boundary conditions Q̃(0) = 0 and Q̃(1) = 1, it is called
a coherent quantifier mapping [7].

We assume that for every soft quantifier Q an appropriate quantifier mapping Q̃
can be defined, i.e. a function that represents the meaning of Q. Using two thresholds
α ∈ [0, 1] and β ∈ [0, 1], where α ≤ β, the following equation defines a parametrized
family of such quantifier mappings:

Q̃[α,β](x) =


0 if x < α
x−α
β−α if α ≤ x < β
1 if x ≥ β

(3)

Figure 1 depicts a possible coherent quantifier mapping for the soft quantifier “a
few” as Q̃Few = Q̃[0.1,0.4] and for the soft quantifier “most” as Q̃Most = Q̃[0.25,0.75]. Note
how Q̃Few is more relaxed than Q̃Most. For example, using these mappings, the state-
ment “a few friends of Bob smoke” is true to degree 1 as soon as 40% of Bob’s friends
are smokers, while 75% of Bob’s friends are required to be smokers for the statement
“most friends of Bob smoke” to be fully true. The evaluation section contains a detailed
analysis on the effect of the choice of the thresholds α and β on the results obtained
with MPE inference. In practice friendship is not necessarily a black-and-white matter,
i.e., people can be friends to varying degrees. For instance, I(Friend(Bob,Alice)) = 1
and I(Friend(Bob,Chris)) = 0.2 denote that under interpretation I, Alice is a very
close friend of Bob, while Chris is a more distant friend. Similarly, Chris might be a
heavy smoker, while Alice might be only a light smoker. All these degrees can and
should be taken into account when computing the truth degree of statements such as
“a few friends of Bob smoke” and “most friends of Bob smoke”. We define the inter-
pretation of a grounded quantifier expression based on the Zadeh approach [29]. Zadeh
suggested to calculate the truth value of “Q A’s are Bs”, with A : U → [0, 1] and
B : U → [0, 1] fuzzy sets in a universe U , as: Q̃

(
|A∩B|
|A|

)
, where A ∩ B is a fuzzy set

defined as: A ∩ B : U → [0, 1] : u 7→ A(u)∧̃B(u). In this expression, the cardinality of
a fuzzy set S : U → [0, 1] is defined as: |S| =

∑
u∈U S(u) .

Definition 5. For a given interpretation I, the interpretation of a grounded quantifier
expression Q(V, F1[V ], F2[V ]) is defined as

I(Q(V, F1[V ], F2[V ])) = Q̃

(∑
x∈DV

I(F1(x)) ∧̃ I(F2(x))∑
x∈DV

I(F1(x))

)
(4)

with Q̃ a quantifier mapping modeling Q and DV the domain of V .
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Fig. 2: Sample trust network between five users

Example 1. Let’s consider an interpretation I in a sample trust network as shown in
Figure 2. Nodes represent users and each edge represents the trust relation between two
users. Since a trust relation is asymmetric, the direction of the trust relation is shown
with an arrow. The degree of the trust links are shown with a value under/above the
links, e.g., I(Trusts(Alice,Ann)) = 0.9.
To calculate I(Most(X,Trusts(Alice,X), T rusts(X,Bob))), we calculate:∑
x(I(Trusts(Alice, x))∧̃ I(Trusts(x,Bob))) = 1.3 and

∑
x I(Trusts(Alice, x)) = 3.2, thus we

have Q̃
(
1.3
3.2

)
∼ Q̃(0.41). By using the quantifier expression mapping of “most” in Fig-

ure 1, we obtain Q̃[0.25,0.75](0.41) = 0.32. Thus, under interpretation I , “most trustees
of Alice trust Bob” to degree 0.32.

Remark 2. In Łukasiewicz logic, the formula φ1 → φ2 where → is implication, is
logically equivalent to the formula ¬φ1 ∨ φ2, thus the interpretation of a grounded
PSLQ rule r is as follows:

I(r) = I(rbody → rhead) = ¬̃I(rbody)∨̃I(rhead) (5)

Definition 6. The distance to satisfaction dr(I) of a rule r under an interpretation I is
defined as:

dr(I) = max{0, I(rbody)− I(rhead)} (6)

By using Remark 2, one can show that a rule r is fully satisfied, i.e. satisfied to
degree 1, when the truth value of its head is at least as high as the truth value of its body.
Thus, the closer the interpretation of a grounded rule is to 1, the smaller its distance to
satisfaction.

A PSLQ model, i.e., a set of PSLQ rules, induces a distribution over interpretations
I . Let R be the set of all grounded rules, then the probability density function is:

f(I) =
1

Z
exp[−

∑
r∈R

λr(dr(I))
p] (7)

where λr is the weight of rule r, Z is a normalization constant

Z =

∫
I

exp[−
∑
r∈R

λr(dr(I))
p]

and p ∈ {1, 2}. These probabilistic models are instances of hinge-loss Markov random
fields (HL-MRF). For further explanation we refer to [2]. Choosing p = 1 (i.e., linear)
favors interpretations that completely satisfy one rule at the expense of higher distance
from satisfaction for conflicting rules, and p = 2 favors interpretations that satisfy all
rules to some degree (i.e, quadratic). Note that in Section 3 we only consider p = 1,
since by [2] the results can be extended for p = 2.



6

3 Inference and Weight Learning in PSLQ

Expressing soft quantifiers pushes beyond the capabilities of inference and weight learn-
ing methods in PSL. In this section, we introduce new methods for inference based on
the most probable explanation inference method (MPE inference) and weight learning
with maximum-likelihood estimation (MLE) in PSLQ.

3.1 Inference

The goal of MPE “most probable explanation” inference is to find the most probable
truth assignments IMPE of unknown ground atoms given the evidence which is defined
by the interpretation I . LetX be all the evidence, i.e., X is the set of ground atoms such
that ∀x ∈ X, I(x) is known, and let Y be the set of ground atoms such that ∀y ∈ Y, I(y)
is unknown. Then we have

IMPE(Y ) = arg maxI(Y )P (I(Y )|I(X)) (8)

and by Equation 7 it follows that the goal of optimization is to minimize the weighted
sum of the distances to satisfaction of all rules. Using the particular semantics of Łuka-
siewicz logic we can translate this optimization problem to a set of linear constraints.

Remark 3. Suppose we want to optimize a f : [0, 1]n → [0, 1] function consisting of
applications of only piecewise linear functions, fractions of piecewise linear functions,
min : [0, 1]2 → [0, 1] and max : [0, 1]2 → [0, 1]. We can transform such an optimiza-
tion problem as follows. For every expression of the form min(φ, ψ), we introduce a
variable vmin(φ,ψ) and add the constraints 0 ≤ φ, ψ, vmin(φ,ψ) ≤ 1, vmin(φ,ψ) ≤ φ and
vmin(φ,ψ) ≤ ψ. Similarly, for every expression of the form max(φ, ψ), we introduce a
variable vmax(φ,ψ) and add the constraints 0 ≤ φ, ψ, vmax(φ,ψ) ≤ 1, vmax(φ,ψ) ≥ φ
and vmax(φ,ψ) ≥ ψ. Define the function g as the original function f but all minima and
maxima are replaced by their corresponding variables. Optimizing f is then equivalent
to optimizing g under these constraints.

By the particular piecewise linear form of dr(I) (see Equation 6) and Remark 3,
standard PSL’s underlying HL-MRFs have log concave density functions and hence
finding an MPE assignment is a convex optimization problem, which is solvable in
polynomial time. Standard PSL only supports linear constraints to preserve convexity.
Hence, standard PSL potentially can support linear aggregates.

Definition 7. An aggregate is a [0, 1]n → [0, 1] mapping. If it is a linear mapping, it is
called a linear aggregate, otherwise it is called a non-linear aggregate.

As an example, f : [0, 1]n → [0, 1] : (t1, .., tn) 7→ t1+t2+...+tn
n

is a linear aggregate. A
PSLQ program allows expressions that contain quantifier expressions. Since the inter-
pretation of a grounded quantifier expression (see Equation 4) is based on a non-linear
aggregate, finding a MPE assignment of a PSLQ program with quantifier expressions is
beyond the capabilities of the standard PSL MPE-solver. To deal with this, we will first
categorize different types of grounded quantifier expressions, given the interpretation I
denoting the evidence.

Definition 8. A grounded quantifier expression Q(V, F1[V ], F2[V ]), where for every s ∈
DV , it holds that all ground atoms in the formulas F1[s] and F2[s] are in X , is called a
fully observed grounded quantifier expression (FOQE).
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For instance, in a social network where the age and the friends of all users are
known, by groundingMost(X,Friend(A,X), Y oung(X)), we obtain FOQEs. Note that
for a FOQE Q(V, F1[V ], F2[V ]), we have that I(Q(V, F1[V ], F2[V ])) is a known value in
[0, 1].

Definition 9. A grounded quantifier expression Q(V, F1[V ], F2[V ]), where for every s ∈
DV , it holds that all ground atoms in the formula F1[s] are in X and there exists t ∈ DV
such that at least one ground atom in the formula F2[t] is in Y , is called a partially
observed grounded quantifier expression of type one (POQE(1)).

Suppose all friendship relations are known and the goal is to infer the age of all users
based on the age of some, then by grounding Most(X,Friend(A,X), Y oung(X)), we
obtain POQE(1)s. Node labelling applications can benefit from the use of POQE(1)s.
Note that for a POQE(1) Q(V, F1[V ], F2[V ]), we have that I(Q(V, F1[V ], F2[V ])) =

Q̃(f(Y )) where f is a piecewise linear function in variables belonging to Y .

Definition 10. A grounded quantifier expression Q(V, F1[V ], F2[V ]), for which there
exists t ∈ DV such that at least one ground atom in the formula F1[t] is in Y , is called
a partially observed grounded quantifier expression of type two (POQE(2)).

Note that for a POQE(2) Q(V, F1[V ], F2[V ]), we have that I(Q(V, F1[V ], F2[V ])) =

Q̃(f(Y )) where f is a fraction of piecewise linear functions in variables belonging to
Y . In link prediction applications, such as trust link prediction, we mostly deal with
POQE(2)s. By grounding the rules 10−14 in Table 1 using unknown trust relations, we
obtain complex examples of POQE(2)s.

In the following proposition we give an equivalent definition for the membership
function in Equation 3. By applying Remark 3 we will then be able to show that a
PSLQ program can be transformed to a linear fractional program (LFP).

Proposition 1. The membership-function defined in Equation 3 where α ∈ [0, 1], β ∈
[0, 1], and α ≤ β can be rewritten as:

Q̃[α,β](x) = max(0,
x− α
β − α ) + min(

x− α
β − α, 1)−

x− α
β − α (9)

After grounding a PSLQ program we can obtain a mixture of FOQE’s, POQE(1)’s
and POQE(2)’s. Recall that for a FOQE Q(V, F1[V ], F2[V ]), we have that
I(Q(V, F1[V ], F2[V ])) ∈ [0, 1]. On the other hand, for a POQE(1) Q(V, F1[V ], F2[V ]),
we have that I(Q(V, F1[V ], F2[V ])) = Q̃(f(Y )) where f is a piecewise linear func-
tion in variables belonging to Y and for a POQE(2) Q(V, F1[V ], F2[V ]), we have that
I(Q(V, F1[V ], F2[V ])) = Q̃(g(Y )) where g is a fraction of piecewise linear functions
in variables belonging to Y . By applying Proposition 1 and Remark 3 it then follows
that a PSLQ program using piecewise linear quantifier mappings such as in Equation 3
can be transformed to a linear fractional program (LFP). Note that this is only a worst
case scenario: if the grounded PSLQ program has no POQE(2)’s then we obtain a lin-
ear program. We can then use a transformation similar to the approach of Isbell and
Marlow [13] to replace a LFP to a set of linear programs by establishing a convergent
iterative process. The linear program at each iteration is determined by optimization of
the linear program at the previous iteration.

The algorithm we propose for the MPE inference (Algorithm 1) starts by initializing
all random variables to zero (i.e., line 2). Then, an iterative process starts by grounding
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Algorithm 1 Iterative MPE inference in PSLQ

Require: PSLQ program P , evidence variables X and random variables Y

1: R← ∅
2: I(0)(Y )← 0
3: for i := 1 to k do
4: for r ∈ P do
5: Rg ← ground(r)
6: for rg ∈ Rg do
7: for every Q of type POQE(2) in rg do
8: I(Q)← Q̃(I(X) ∪ Ii−1(Y ))
9: end for

10: drg (I)← 1− I(rg)
11: if not drg (I) = 0 then
12: R← R ∪ rg
13: end if
14: end for
15: end for
16: f(I)← generate(R)
17: G(I)← transform(f(I))

18: I(i)(Y )← optimize(G(I))
19: end for

all rules in a PSLQ program (i.e., line 3-5). For every grounded quantifier expression Q
of type POQE(2), the value of Q is initialized by calculating the value over the known
values (I(X)) and the current setting of the unknown values (I(0)(Y )). In the algorithm,
we use the notation Q̃(I(X) ∪ Ii−1(Y )) to denote this new interpretation of Q at it-
eration i (i.e., line 7-9). For each rule rg we then calculate the distance to satisfaction
(i.e., line 10). Note that I(rg) and hence also drg (I) can be piecewise linear functions
in Y , but here drg (I) does not contain fractions of piecewise linear functions since
we calculate values for the POQE(2)s. Next, we exclude the satisfied grounded rules
(i.e., we exclude rules rg such that drg (I) = 0) from the optimization since their values
will not change the optimization task (i.e., line 11-13). For the optimization task, f(I)
(Equation 7) is calculated using the distance to satisfaction of all grounded rules (i.e.,
line 16). Since f(I) does not contain fractions of piecewise linear functions, it can be
transformed to a linear program (i.e., line 17). Finally, the inner optimization in PSLQ
is solved with PSL’s scalable, parallelizable message-passing inference algorithm [2]
(i.e., line 18). In each iteration, the values of Qs get updated by the most probable as-
signment of random variables in the previous iteration (I(X) ∪ I(i−1)(Y )) (i.e., line 8).
This process is iteratively repeated for a fixed number of times (i.e., k).

3.2 Weight Learning
The goal of weight learning based on maximum likelihood estimation (MLE) is to max-
imize the log likelihood of the rules’ weight based on the training data in Equation 7.
Hence, the partial derivatives of log likelihood with respect to λi of rule ri ∈ R is

−δlog(f(I))
δλi

= Eλ[
∑
r∈Rgi

(dr(I))
p]−

∑
r∈Rgi

(dr(I))
p (10)

with Eλ the expected value under the distribution defined by λ, and Rgi is the set
of grounded rules of rule ri. The optimization is based on the voted perception al-
gorithm [6], in which approximation is done by taking fixed-length steps through the
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direction of gradient and averaging the points after all steps; out of the scope steps are
projected back into the feasible region. To make the approximation tractable, a MPE
approximation is used that replaces the expectation in the gradient with the correspond-
ing values in the MPE state. We use our proposed MPE approach for transforming
POQE(1)s and POQE(2)s in our MLE algorithm. We omit the pseudocode of the MLE
algorithm for a PSLQ program to save space.

4 Evaluation: Trust Link Prediction

Studies have shown that people tend to rely more on recommendations from people they
trust than on online recommender systems which generate recommendations based on
anonymous people similar to them. This observation has generated a rising interest
in trust-enhanced recommendation systems [26]. The recommendations generated by
these systems are based on an (online) trust network, in which members of the com-
munity express whether they trust or distrust each other. In practice these networks are
sparse because most people are connected to relatively few others. Trust-enhanced rec-
ommendation systems therefore rely on link prediction. In [12], trust relations between
social media users are modeled and predicted using a PSL model based on structural
balance theory [11]. Structural balance theory implies the transitivity of a relation be-
tween users. Based on this theory, users are more prone to trust their neighbors in the
network rather than unknown other users. In [2]1, this PSL model was evaluated on data
from Epinions2, an online consumer review site in which users can indicate whether
they trust or distrust each other. Throughout this section, we will use the same sample
of Epinions [17]. The sample dataset includes 2,000 users with 8,675 relations, namely
7,974 trust relations and only 701 distrust relations. We systematically perform 8-fold
cross-validation and to evaluate the results, we use three metrics, AUC: the area un-
der the receiver operating characteristic curve, PR+: the area under the precision-recall
curves for trust relations, and PR-: the area under the precision-recall curves for distrust
relations. In each fold, we first learn the weights of the rules based on 7/8 of the trust
network and then apply the learned model on the remaining 1/8 to infer the trust/distrust
relations. Bach et al. used the model of [12] which is composed of twenty PSL rules in
order to predict the degree of trust between two individuals. Sixteen rules from these
rules encode possible stable triangular structures involving the two individuals and a
third one. For example, an individual is likely to trust people his or her friends trust.
The model of [12] is used to predict unobserved truth-values of Trusts(A,B) for pairs
of individuals. The results of this model are shown in the first line in Table 2. In this

1 Source code available at http://psl.umiacs.umd.edu
2 www.epinions.com

Table 1: PSLQ model for trust link prediction
Transitive rules

(R#1) Knows(A,B) ∧ Trusts(A,B) ∧ Knows(B,C) ∧ Trusts(B,C) ∧ Knows(A,C) → Trusts(A,C)
(R#2) Knows(A,B) ∧ ¬Trusts(A,B) ∧ Knows(B,C) ∧ Trusts(B,C) ∧ Knows(A,C) → ¬Trusts(A,C)
(R#3) Knows(A,B) ∧ Trusts(A,B) ∧ Knows(B,C) ∧ ¬Trusts(B,C) ∧ Knows(A,C) → ¬Trusts(A,C)
(R#4) Knows(A,B) ∧ ¬Trusts(A,B) ∧ Knows(B,C) ∧ ¬Trusts(B,C) ∧ Knows(A,C) → Trusts(A,C)

Cyclic rule
(R#5) Knows(A,B) ∧ Trusts(A,B) ∧ Knows(B,C) ∧ Trusts(B,C) ∧ Knows(C,A) → Trusts(C,A)

Complementary rules
(R#6) Knows(A,B) ∧ Knows(B,A) ∧ Trusts(B,A) → Trusts(A,B)
(R#7) Knows(A,B) ∧ Knows(B,A) ∧ ¬Trusts(B,A) → ¬Trusts(A,B)
(R#8) Knows(A,B) ∧ Average({Trusts}) → Trusts(A,B)
(R#9) Knows(A,B) ∧ Trusts(A,B) → Average({Trusts})

PSLQ rules based on the transitive rules
(R#10) Q(X, Knows(A,X) ∧ Trusts(A,X), Knows(X,C) ∧ Trusts(X,C)) ∧ Knows(A,C) → Trusts(A,C)
(R#11) Q(X, Knows(A,X) ∧ ¬Trusts(A,X), Knows(X,C) ∧ Trusts(X,C)) ∧ Knows(A,C) → ¬Trusts(A,C)
(R#12) Q(X, Knows(A,X) ∧ Trusts(A,X), Knows(X,C) ∧ ¬Trusts(X,C)) ∧ Knows(A,C) → ¬Trusts(A,C)
(R#13) Q(X, Knows(A,X) ∧ ¬Trusts(A,X), Knows(X,C) ∧ ¬Trusts(X,C)) ∧ Knows(A,C) → Trusts(A,C)

PSLQ rule based on the cyclic rule
(R#14) Q(X, Knows(A,X) ∧ Trusts(A,X), Knows(X,C) ∧ Trusts(X,C)) ∧ Knows(C,A) → Trusts(C,A)
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(a) (b) (c)

Fig. 3: (a) PR+ , (b) PR-, and (c) AUC of changing α and β in the quantifier mapping Q̃

paper, we propose a model based on 4 transitive rules (rules 1–4 in Table 1) and one
rule which models the cyclic relation between 3 users (rule 5 in Table 1). Rules 6-9 in
Table 1 are complementary rules that we refer to [12] for further explanation. The atom
Average({Trusts}) in rules 8 and 9 is a constant which refers to the global average
value of observed trust scores. This atom is useful for the disconnected parts of the trust
network without any known trust relation. These four rules are also used in the PSL
model of [2]. To investigate whether we can improve the accuracy of the predictions by
introducing rules with soft quantifier expressions, we construct PSLQ rules based on a
triad relation over a set of users instead of a third party (rules 10-14). The full PSLQ
model then consists of all rules displayed in Table 1.

We examine what happens when changing the thresholds for the quantifier map-
pings Q̃ (Equation 3). We have investigated ten different quantifier mappings by chang-
ing the values of α and β by steps of 0.25. In this way, we obtain ten different PSLQ
programs. For every program, we applied Algorithm 1 for all k ∈ {1, 2, . . . , 10}. Note
that for k = 1 the output of the MPE inference is equivalent to the output generated
by a PSLQ model with only FOQEs by ignoring the unknown values. Figure 3 presents
changes of the three metrics of these ten PSLQ models with different quantifier map-
pings. All ten PSLQ models outperform the PSL model (shown with a line) in all iter-
ations and in all three metrics, except for the PSLQ model with Q̃[0.75,1] in PR− after
the first two iterations. An explanation for this is the fact that people trust/distrust a
third party as soon as a few/some of their trusted/distrusted friends trust/distrust that
person and not most of them, i.e., more than 75%. Interestingly, by decreasing both α
and β values, results get better. The model with the best predicting scores is PSLQ with
Q̃[0,0.25] as a quantifier mapping representing “a few”(see Table 2).

Figure 4 emphasizes the importance of the PSLQ rules with quantifier expressions
(rules 10–14) after the weight learning phase. Bars represent average and error bars

Table 2: Values with a ∗ are statistically significant with a rejection threshold of 0.05
and values in bold are statistically significant with a rejection threshold of 0.1 using
a paired t-test w.r.t. the PSL model [2]. Distrust prediction is more challenging than
trust prediction (i.e., PR- values are overall lower than PR+ values) because of the
unbalanced nature of the data (7,974 trust vs. 701 distrust relations)

Method PR+ PR- AUC
PSL 0.977 0.446 0.812

PSLQ (Q̃[0,0.25]), (k = 1) 0.979* 0.467* 0.825*
PSLQ (Q̃[0,0.25]), (k = 10) 0.979* 0.463 0.824*
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Fig. 4: Learned values of the weight of the 14 rules of the PSLQ model

represent minimum and maximum weights of the rules learned in 8 folds for the PSLQ

model with quantifier mapping Q̃[0,0.25]. These results show that using soft quantifiers
not only improves the accuracy of trust and distrust predictions but also that the rules
containing soft quantifiers, i.e. rules 10-14, play a major part in this by dominating all
other rules in terms of weight. In these experiments, we used one quantifier mapping
for all the quantifiers in a PSLQ program; however it is possible to use different map-
ping functions for each quantifier expression in a PSLQ model, which is an interesting
direction for future research.

5 Conclusion

In this paper, we have introduced PSLQ, the first SRL framework that supports reason-
ing with soft quantifiers, such as “most” and “a few”. PSLQ is a powerful and expressive
language to model uncertain relational data in an intuitive way. Since this expressivity
pushed beyond the capabilities of existing PSL-MPE solvers, we have introduced and
implemented new inference and weight learning algorithms that can handle rules with
soft quantifiers. We have shown how the higher expressivity of PSLQ can lead to better
results in practice by extending an existing PSL model for link prediction in social trust
networks with rules that contain soft quantifiers. We have presented the effects of using
different interpretations of soft quantifiers in our trust model. As a next step, we want
to include an automatic way of learning the best interpretation for each quantifier ex-
pression in a PSLQ model. Besides trust link prediction, many other applications could
benefit from the use of soft quantifiers. Exploring the effects of using soft quantifiers
in PSLQ models for other AI applications is therefore another promising research di-
rection. Furthermore, in addition to the approach of Zadeh that we have used in this
paper, other approaches for soft quantifiers have been proposed, most notably Yager’s
OWA-operators [28]; we plan to investigate them in our future work.
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