176 research outputs found

    Lake and catchment-scale determinants of aquatic vegetation across almost 1,000 lakes and the contrasts between lake types

    Get PDF
    Aim The factors controlling macrophyte (aquatic plant) composition are complex, recent research having shown that the well-studied effects of lake environmental factors (the so-called “environmental filter”) can be constrained by hydrological and landscape factors. We investigated the factors determining macrophyte composition in lakes over water body and catchment- scales and the transferability of this pattern across lake types. Location Almost 1000 lakes distributed across Britain. Taxon Lake macrophytes Methods Lakes were partitioned into five types based on subdivision of alkalinity and elevation gradients. Data from botanical surveys were used to compare the spatial turnover and nestedness components of beta diversity between lake types. The relative importance of lake environment (based on local physicochemical data), hydrology (e.g. lake and stream density), landscape (e.g. fragmentation indices, land cover) and spatial autocorrelation in explaining variation in macrophyte composition were derived from variance partitioning. Results Species composition showed strong spatial structuring, suggestive of overland dispersal, enhanced by spatially-correlated abiotic factors such as alkalinity and elevation. Catchment-scale factors (e.g. land use, connectivity) promoted the establishment of different communities (more or less diverse, or differing in composition) but were of secondary importance. Turnover in composition between upland lakes was lower than in other lake types, reflecting a more specialist flora and increased potential for propagule exchange due to spatial aggregation and higher hydrological connectivity. Main conclusions Vegetation composition in lakes is more spatially-structured than previously appreciated, consistent with the importance of dispersal limitation, but this does not apply evenly to all lakes, being most acute in lowland high alkalinity lakes. Thus, spatially-structured abiotic factors, such as alkalinity, influence macrophyte composition most (suggestive of niche filtering) in high alkalinity lakes where human impacts tend to be greatest, although nestedness was also lowest in such lakes. By contrast, hydrological connectivity has a proportionally stronger structuring role in upland lakes

    Jockeying for position: the construction of masculine identities

    Get PDF
    In this paper we examine the construction of masculine identities within a real-life social situation. Using data from an extensive series of interviews with small groups of sixth-form (17-18-year-old) students attending a UK-based, single-sex independent school, the analysis looks at the action orientation of different constructions of identity. More specifically, it focuses upon how the identity talk of one particular group of students were oriented towards managing their subordinate status within the school. In a number of instances the identity of the `new man' was adopted as a strategy of resistance. However, it was found that the more common strategy involved buying back into values embodied within a more traditional definition of masculinity

    Inherited biotic protection in a Neotropical pioneer plant

    Get PDF
    Chelonanthus alatus is a bat-pollinated, pioneer Gentianaceae that clusters in patches where still-standing, dried-out stems are interspersed among live individuals. Flowers bear circum-floral nectaries (CFNs) that are attractive to ants, and seed dispersal is both barochorous and anemochorous. Although, in this study, live individuals never sheltered ant colonies, dried-out hollow stems - that can remain standing for 2 years - did. Workers from species nesting in dried-out stems as well as from ground-nesting species exploited the CFNs of live C. alatus individuals in the same patches during the daytime, but were absent at night (when bat pollination occurs) on 60.5% of the plants. By visiting the CFNs, the ants indirectly protect the flowers - but not the plant foliage - from herbivorous insects. We show that this protection is provided mostly by species nesting in dried-out stems, predominantly Pseudomyrmex gracilis. That dried-out stems remain standing for years and are regularly replaced results in an opportunistic, but stable association where colonies are sheltered by one generation of dead C. alatus while the live individuals nearby, belonging to the next generation, provide them with nectar; in turn, the ants protect their flowers from herbivores. We suggest that the investment in wood by C. alatus individuals permitting stillstanding, dried-out stems to shelter ant colonies constitutes an extended phenotype because foraging workers protect the flowers of live individuals in the same patch. Also, through this process these dried-out stems indirectly favor the reproduction (and so the fitness) of the next generation including both their own offspring and that of their siblings, alladding up to a potential case of inclusive fitness in plants

    Three Novel Pigmentation Mutants Generated by Genome-Wide Random ENU Mutagenesis in the Mouse

    Get PDF
    Three mutant mice with pigmentation phenotypes were recovered from a genomewide random mouse chemical mutagenesis study. White toes (Whto; MGI:1861986), Belly spot and white toes (Bswt; MGI:2152776) and Dark footpads 2 (Dfp2; MGI:1861991) were identified following visual inspection of progeny from a male exposed to the point mutagen ethylnitrosourea (ENU). In order to rapidly localize the causative mutations, genome-wide linkage scans were performed on pooled DNA samples from backcross animals for each mutant line. Whto was mapped to proximal mouse chromosome (Mmu) 7 between Cen (the centromere) and D7Mit112 (8.0 cM from the centromere), Bswt was mapped to centric Mmul between D1Mit214 (32.1 cM) and D1Mit480 (32.8 cM) and Dfp2 was mapped to proximalMmu4 between Cen and D4Mit18 (5.2 cM). Whto, Bswt and Dfp2 may provide novel starting points in furthering the elucidation of genetic and biochemical pathways relevant to pigmentation and associated biological processes

    Germline polymorphisms in SIPA1 are associated with metastasis and other indicators of poor prognosis in breast cancer

    Get PDF
    INTRODUCTION: There is growing evidence that heritable genetic variation modulates metastatic efficiency. Our previous work using a mouse mammary tumor model has shown that metastatic efficiency is modulated by the GTPase-activating protein encoded by Sipa1 ('signal-induced proliferation-associated gene 1'). The aim of this study was to determine whether single nucleotide polymorphisms (SNPs) within the human SIPA1 gene are associated with metastasis and other disease characteristics in breast cancer. METHOD: The study population (n = 300) consisted of randomly selected non-Hispanic Caucasian breast cancer patients identified from a larger population-based series. Genomic DNA was extracted from peripheral leukocytes. Three previously described SNPs within SIPA1 (one within the promoter [-313G>A] and two exonic [545C>T and 2760G>A]) were characterized using SNP-specific PCR. RESULTS: The variant 2760G>A and the -313G>A allele were associated with lymph node involvement (P = 0.0062 and P = 0.0083, respectively), and the variant 545C>T was associated with estrogen receptor negative tumors (P = 0.0012) and with progesterone negative tumors (P = 0.0339). Associations were identified between haplotypes defined by the three SNPs and disease progression. Haplotype 3 defined by variants -313G>A and 2760G>A was associated with positive lymph node involvement (P = 0.0051), and haplotype 4 defined by variant 545C>T was associated with estrogen receptor and progesterone receptor negative status (P = 0.0053 and P = 0.0199, respectively). CONCLUSION: Our findings imply that SIPA1 germline polymorphisms are associated with aggressive disease behavior in the cohort examined. If these results hold true in other populations, then knowledge of SIPA1 SNP genotypes could potentially enhance current staging protocols

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    corecore