13 research outputs found

    The laser guide star facility for the Thirty Meter Telescope

    Get PDF
    The Thirty Meter Telescope (TMT) will utilize adaptive optics to achieve near diffraction-limited images in the near-infrared using both natural and laser guide stars. The Laser Guide Star Facility (LGSF) will project up to eight Na laser beacons to generate guide stars in the Earth's Na layer at 90 - 110 km altitude. The LGSF will generate at least four distinct laser guide star patterns (asterisms) of different geometry and angular diameter to meet the requirements of the specific adaptive optics modules for the TMT instruments. We describe the baseline concept for this facility, which draws on the heritage from the systems being installed at the Gemini telescopes. Major subsystems include the laser itself and its enclosure, the optics for transferring the laser beams up the telescope structure and the asterism generator and launch telescope, both mounted behind the TMT secondary mirror. We also discuss operational issues, particularly the required safety interlocks, and potential future upgrades to higher laser powers and precompensation of the projected laser beacons using an uplink adaptive optics system

    The laser guide star facility for the Thirty Meter Telescope

    Get PDF
    The Thirty Meter Telescope (TMT) will utilize adaptive optics to achieve near diffraction-limited images in the near-infrared using both natural and laser guide stars. The Laser Guide Star Facility (LGSF) will project up to eight Na laser beacons to generate guide stars in the Earth's Na layer at 90 - 110 km altitude. The LGSF will generate at least four distinct laser guide star patterns (asterisms) of different geometry and angular diameter to meet the requirements of the specific adaptive optics modules for the TMT instruments. We describe the baseline concept for this facility, which draws on the heritage from the systems being installed at the Gemini telescopes. Major subsystems include the laser itself and its enclosure, the optics for transferring the laser beams up the telescope structure and the asterism generator and launch telescope, both mounted behind the TMT secondary mirror. We also discuss operational issues, particularly the required safety interlocks, and potential future upgrades to higher laser powers and precompensation of the projected laser beacons using an uplink adaptive optics system

    MCAO for Gemini South

    Get PDF
    The multi-conjugate adaptive optics (MCAO) system design for the Gemini-South 8-meter telescope will provide near-diffraction-limited, highly uniform atmospheric turbulence compensation at near-infrared wavelengths over a 2 arc minute diameter field-of-view. The design includes three deformable mirrors optically conjugate to ranges of 0, 4.5, and 9.0 kilometers with 349, 468, and 208 actuators, five 10-Watt-class sodium laser guide stars (LGSs) projected from a laser launch telescope located behind the Gemini secondary mirror, five Shack-Hartmann LGS wavefront sensors of order 16 by 16, and three tip/tilt natural guide star (NGS) wavefront sensors to measure tip/tilt and tilt anisoplanatism wavefront errors. The WFS sampling rate is 800 Hz. This paper provides a brief overview of sample science applications and performance estimates for the Gemini South MCAO system, together with a summary of the performance requirements and/or design status of the principal subsystems. These include the adaptive optics module (AOM), the laser system (LS), the beam transfer optics (BTO) and laser launch telescope (LLT), the real time control (RTC) system, and the aircraft safety system (SALSA)

    Gemini MCAO Control System

    No full text
    The Gemini Observatory is planning to implement a Multi Conjugate Adaptive Optics System as a facility instrument for the Gemini-South telescope. The system will include 5 Laser Guide Stars, 3 Natural Guide Stars, and 3 Deformable mirrors optically conjugated at different altitudes to achieve near-uniform atmospheric compensation over a 1 arc minute square field of view. The control of such a system will be split in 3 main functions: the control of the opto-mechanical assemblies of the whole system (including the Laser, the Beam Transfer Optics and the Adaptive Optics bench), the control of the Adaptive Optics System itself at a rate of 800 frames per second and the control of the safety system. The control of the adaptive Optics System is the most critical in terms of real time performance. In this paper, we will describe the requirements for the whole Multi Conjugate Adaptive Optics Control System, preliminary designs for the control of the opto-mechanical devices and architecture options for the control of the Adaptive Optics system and the safety system

    The rise of oxygen and the hydrogen hourglass

    Get PDF
    Funding: the NASA Exobiology Program and the NASA National Astrobiology Institute. DCC acknowledges support from NASA Exobiology grant number NNX10AQ90G.Oxygenic photosynthesis appears to be necessary for an oxygen-rich atmosphere like Earth’s. But available geological and geochemical evidence suggest that at least 200 Myr, and possibly more than 700 Myr, elapsed between the advent of oxygenic photosynthesis and the establishment of an oxygen atmosphere. The interregnum implies that at least one other necessary condition for O2 needed to be met. Here we argue that the second condition was the oxidation of the surface and crust to the point where O2 became more stable than competing reduced gases such as CH4. The cause of Earth’s surface oxidation would be the same cause as it is for other planets with oxidized surfaces: hydrogen escape to space. The duration of the interregnum would have been determined by the rate of hydrogen escape and by the size of the reduced reservoir that needed to be oxidized before O2 became favored. We suggest that continental growth has been influenced by hydrogen escape, and we speculate that, if there must be an external bias to biological evolution, hydrogen escape can be that bias.Publisher PDFPeer reviewe
    corecore