25 research outputs found

    CaracteĢrisation et eĢvaluation de textiles antifongiques

    Get PDF
    HypotheĢ€se: Lā€™impression sur textile dā€™une formulation de microparticules lipidiques avec un principe actif (eĢconazole nitrate) permet de conserver ou dā€™ameĢliorer son activiteĢ pharmaceutique ex vivo et in vitro. MeĢthode: Une formulation de microparticules dā€™eĢconazole nitrate (ECN) a eĢteĢ formuleĢe par homogeĢneĢisation aĢ€ haut cisaillement, puis imprimeĢe sur un textile LayaTM par une meĢthode de seĢrigraphie. La taille des microparticules, la tempeĢrature de fusion des microparticules sur textile et la teneur en eĢconazole du tissu ont eĢteĢ deĢtermineĢes. La stabiliteĢ de la formulation a eĢteĢ suivie pendant 4 mois aĢ€ 25Ā°C avec 65% humiditeĢ reĢsiduelle (RH). Lā€™activiteĢ in vitro des textiles pharmaceutiques a eĢteĢ mesureĢe et compareĢe aĢ€ la formulation commerciale 1% eĢconazole nitrate (w/w) sur plusieurs espeĢ€ces de champignons dont le C. albicans, C. glabrata, C. kefyr, C. luminisitae, T. mentagrophytes et T. rubrum. La thermosensibiliteĢ des formulations a eĢteĢ eĢtudieĢe par des tests de diffusion in vitro en cellules de Franz. Lā€™absorption cutaneĢe de lā€™eĢconazole a eĢteĢ eĢvalueĢe ex vivo sur la peau de cochon. ReĢsultats: Les microparticules dā€™eĢconazole avaient des tailles de 3.5Ā±0.1 Ī¼m. La tempeĢrature de fusion eĢtait de 34.8Ā°C. La thermosensibiliteĢ a eĢteĢ deĢtermineĢe par un relargage deux fois supeĢrieur aĢ€ 32Ā°C compareĢs aĢ€ 22Ā°C sur 6 heures. Les textiles ont preĢsenteĢ une teneur stable pendant 4 mois. Les textiles dā€™ECN in vitro ont deĢmontreĢ une activiteĢ similaire aĢ€ la formulation commerciale sur toutes ii espeĢ€ces de Candida testeĢes, ainsi quā€™une bonne activiteĢ contre les dermatophytes. La diffusion sur peau de cochon a deĢmontreĢ une accumulation supeĢrieure dans le stratum corneum de la formulation textile par rapport aĢ€ la formulation PevarylĀ® aĢ€ 1% ECN. La thermo-sensibiliteĢ de la formulation a permis un relargage seĢlectif au contact de la peau, tout en assurant une bonne conservation aĢ€ tempeĢrature ambiante.Hypothesis: Textile imprinted with a formulation of microparticles of a drug (econazole nitrate) can maintain or improve its pharmaceutical activity ex vivo and in vitro. Methods: A formulation of econazole nitrate microparticles was made by high shear homogenization then printed on a LayaTM textile by screen-printing. The size of microparticles, melting temperature of microparticles on textile and econazole nitrate content were determined. The stability of the formulation was followed for 4 months at 25Ā°C with 65% residual humidity (RH). The in vitro activity of pharmaceutical textiles was measured and compared to the commercial formulation econazole nitrate 1% (w/w) in several species of fungi including C. albicans, C. glabrata, C. kefyr, C. luminisitae, T. mentagrophytes and T. rubrum. Temperature sensitivity of the formulations was studied by in vitro tests in Franz diffusion cells. Dermal absorption of econazole nitrate was assessed ex vivo on pig skin. Results: Econazole microparticles were 3.5Ā±0.1 Ī¼m in diameter. The melting temperature was 34.8Ā°C. The thermosensitivity of the system was determined by a release test at 32Ā°C compared to 22Ā°C over 6 hours. Textiles showed stable levels for 4 months (97Ā±0.3 Ī¼g/cm2). ECN textiles on in vitro tests showed similar activity to the commercial formulation on all Candida species tested, as well as good activity against dermatophytes. Ex vivo tests on pig skin showed a higher accumulation of ECN on the stratum corneum for textile formulation as compared to the PevarylĀ® iv formulation. The thermo-sensitivity of the formulation permits a selective release in contact with the skin, while ensuring good storage at room temperature

    Diabetes mortality and trends before 25 years of age: an analysis of the Global Burden of Disease Study 2019

    Get PDF
    Background Diabetes, particularly type 1 diabetes, at younger ages can be a largely preventable cause of death with the correct health care and services. We aimed to evaluate diabetes mortality and trends at ages younger than 25 years globally using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods We used estimates of GBD 2019 to calculate international diabetes mortality at ages younger than 25 years in 1990 and 2019. Data sources for causes of death were obtained from vital registration systems, verbal autopsies, and other surveillance systems for 1990ā€“2019. We estimated death rates for each location using the GBD Cause of Death Ensemble model. We analysed the association of age-standardised death rates per 100ā€‰000 population with the Socio-demographic Index (SDI) and a measure of universal health coverage (UHC) and described the variability within SDI quintiles. We present estimates with their 95% uncertainty intervals. Findings In 2019, 16ā€‰300 (95% uncertainty interval 14ā€‰200 to 18ā€‰900) global deaths due to diabetes (type 1 and 2 combined) occurred in people younger than 25 years and 73Ā·7% (68Ā·3 to 77Ā·4) were classified as due to type 1 diabetes. The age-standardised death rate was 0Ā·50 (0Ā·44 to 0Ā·58) per 100ā€‰000 population, and 15 900 (97Ā·5%) of these deaths occurred in low to high-middle SDI countries. The rate was 0Ā·13 (0Ā·12 to 0Ā·14) per 100ā€‰000 population in the high SDI quintile, 0Ā·60 (0Ā·51 to 0Ā·70) per 100ā€‰000 population in the low-middle SDI quintile, and 0Ā·71 (0Ā·60 to 0Ā·86) per 100ā€‰000 population in the low SDI quintile. Within SDI quintiles, we observed large variability in rates across countries, in part explained by the extent of UHC (r2=0Ā·62). From 1990 to 2019, age-standardised death rates decreased globally by 17Ā·0% (āˆ’28Ā·4 to āˆ’2Ā·9) for all diabetes, and by 21Ā·0% (ā€“33Ā·0 to āˆ’5Ā·9) when considering only type 1 diabetes. However, the low SDI quintile had the lowest decline for both all diabetes (āˆ’13Ā·6% [ā€“28Ā·4 to 3Ā·4]) and for type 1 diabetes (āˆ’13Ā·6% [ā€“29Ā·3 to 8Ā·9]). Interpretation Decreasing diabetes mortality at ages younger than 25 years remains an important challenge, especially in low and low-middle SDI countries. Inadequate diagnosis and treatment of diabetes is likely to be major contributor to these early deaths, highlighting the urgent need to provide better access to insulin and basic diabetes education and care. This mortality metric, derived from readily available and frequently updated GBD data, can help to monitor preventable diabetes-related deaths over time globally, aligned with the UN's Sustainable Development Targets, and serve as an indicator of the adequacy of basic diabetes care for type 1 and type 2 diabetes across nations.publishedVersio

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950ā€“2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020ā€“21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62Ā·8% [95% UI 60Ā·5ā€“65Ā·1] decline), and increased during the COVID-19 pandemic period (2020ā€“21; 5Ā·1% [0Ā·9ā€“9Ā·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4Ā·66 million (3Ā·98ā€“5Ā·50) global deaths in children younger than 5 years in 2021 compared with 5Ā·21 million (4Ā·50ā€“6Ā·01) in 2019. An estimated 131 million (126ā€“137) people died globally from all causes in 2020 and 2021 combined, of which 15Ā·9 million (14Ā·7ā€“17Ā·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22Ā·7 years (20Ā·8ā€“24Ā·8), from 49Ā·0 years (46Ā·7ā€“51Ā·3) to 71Ā·7 years (70Ā·9ā€“72Ā·5). Global life expectancy at birth declined by 1Ā·6 years (1Ā·0ā€“2Ā·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15Ā·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7Ā·89 billion (7Ā·67ā€“8Ā·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39Ā·5% [28Ā·4ā€“52Ā·7]) and south Asia (26Ā·3% [9Ā·0ā€“44Ā·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92Ā·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990ā€“2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 riskā€“outcome pairs. Pairs were included on the basis of data-driven determination of a riskā€“outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each riskā€“outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of riskā€“outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2Ā·5th and 97Ā·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8Ā·0% (95% UI 6Ā·7ā€“9Ā·4) of total DALYs, followed by high systolic blood pressure (SBP; 7Ā·8% [6Ā·4ā€“9Ā·2]), smoking (5Ā·7% [4Ā·7ā€“6Ā·8]), low birthweight and short gestation (5Ā·6% [4Ā·8ā€“6Ā·3]), and high fasting plasma glucose (FPG; 5Ā·4% [4Ā·8ā€“6Ā·0]). For younger demographics (ie, those aged 0ā€“4 years and 5ā€“14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20Ā·7% [13Ā·9ā€“27Ā·7]) and environmental and occupational risks (decrease of 22Ā·0% [15Ā·5ā€“28Ā·8]), coupled with a 49Ā·4% (42Ā·3ā€“56Ā·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15Ā·7% [9Ā·9ā€“21Ā·7] for high BMI and 7Ā·9% [3Ā·3ā€“12Ā·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1Ā·8% (1Ā·6ā€“1Ā·9) for high BMI and 1Ā·3% (1Ā·1ā€“1Ā·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71Ā·5% (64Ā·4ā€“78Ā·8) for child growth failure and 66Ā·3% (60Ā·2ā€“72Ā·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Burden of disease scenarios for 204 countries and territories, 2022ā€“2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2Ā·5th and 97Ā·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60Ā·1% [95% UI 56Ā·8ā€“63Ā·1] of DALYs were from CMNNs in 2022 compared with 35Ā·8% [31Ā·0ā€“45Ā·0] in 2050) and south Asia (31Ā·7% [29Ā·2ā€“34Ā·1] to 15Ā·5% [13Ā·7ā€“17Ā·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33Ā·8% (27Ā·4ā€“40Ā·3) to 41Ā·1% (33Ā·9ā€“48Ā·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20Ā·1% (15Ā·6ā€“25Ā·3) of DALYs due to YLDs in 2022 to 35Ā·6% (26Ā·5ā€“43Ā·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15Ā·4% (13Ā·5ā€“17Ā·5) compared with the reference scenario, with decreases across super-regions ranging from 10Ā·4% (9Ā·7ā€“11Ā·3) in the high-income super-region to 23Ā·9% (20Ā·7ā€“27Ā·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5Ā·2% [3Ā·5ā€“6Ā·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23Ā·2% [20Ā·2ā€“26Ā·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2Ā·0% [ā€“0Ā·6 to 3Ā·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions
    corecore