544 research outputs found

    Near-infrared optical imaging of nucleic acid nanocarriers in vivo.

    Get PDF
    International audienceNoninvasive, real-time optical imaging methods are well suited to follow the in vivo distribution of nucleic acid nanocarriers, their dissociation, and the resulting gene expression or inhibition. Indeed, most small animal imaging devices perform bioluminescence and fluorescence measurements without moving the animal, allowing a simple, rapid, and cost-effective method of investigation of several parameters at a time, in longitudinal experiments that can last for days or weeks.Here we help the reader in choosing adapted near-infrared (NIR) fluorophores or pairs of fluorophores for Förster resonance energy transfer assays, imaging of reporter genes, as well as nanocarriers for in vivo gene and siRNA delivery. In addition, we present the labeling methods of these macromolecules and of their payload and the protocols to detect them using bioluminescence and NIR fluorescence imaging in mice

    The thermal limits to life on Earth

    Get PDF
    Living organisms on Earth are characterized by three necessary features: a set of internal instructions encoded in DNA (software), a suite of proteins and associated macromolecules providing a boundary and internal structure (hardware), and a flux of energy. In addition, they replicate themselves through reproduction, a process that renders evolutionary change inevitable in a resource-limited world. Temperature has a profound effect on all of these features, and yet life is sufficiently adaptable to be found almost everywhere water is liquid. The thermal limits to survival are well documented for many types of organisms, but the thermal limits to completion of the life cycle are much more difficult to establish, especially for organisms that inhabit thermally variable environments. Current data suggest that the thermal limits to completion of the life cycle differ between the three major domains of life, bacteria, archaea and eukaryotes. At the very highest temperatures only archaea are found with the current high-temperature limit for growth being 122 °C. Bacteria can grow up to 100 °C, but no eukaryote appears to be able to complete its life cycle above ∼60 °C and most not above 40 °C. The lower thermal limit for growth in bacteria, archaea, unicellular eukaryotes where ice is present appears to be set by vitrification of the cell interior, and lies at ∼−20 °C. Lichens appear to be able to grow down to ∼−10 °C. Higher plants and invertebrates living at high latitudes can survive down to ∼−70 °C, but the lower limit for completion of the life cycle in multicellular organisms appears to be ∼−2 °

    Enhancing tumor specific immune responses by transcutaneous vaccination.

    Get PDF
    Our understanding of the involvement of the immune system in cancer control has increased over recent years. However, the development of cancer vaccines intended to reverse tumor-induced immune tolerance remains slow as most current vaccine candidates exhibit limited clinical efficacy. The skin is particularly rich with multiple subsets of dendritic cells (DCs) that are involved to varying degrees in the induction of robust immune responses. Transcutaneous administration of cancer vaccines may therefore harness the immune potential of these DCs, however, this approach is hampered by the impermeability of the stratum corneum. Innovative vaccine formulations including various nanoparticles, such as liposomes, are therefore needed to properly deliver cancer vaccine components to skin DCs. Areas covered: The recent insights into skin DC subsets and their functional specialization, the potential of nanoparticle-based vaccines in transcutaneous cancer vaccination and, finally, the most relevant clinical trial advances in liposomal and in cutaneous cancer vaccines will be discussed. Expert commentary: To define the optimal conditions for mounting protective skin DC-induced anti-tumor immune responses, investigation of the cellular and molecular interplay that controls tumor progression should be pursued in parallel with clinical development. The resulting knowledge will then be translated into improved cancer vaccines that better target the most appropriate immune players.journal articlereviewresearch support, non-u.s. gov't2017 11importe

    Extensive study of human insulin immunoassays: promises and pitfalls for insulin analogue detection and quantification:

    Get PDF
    BACKGROUND: Over the last few decades, new synthetic insulin analogues have been developed. Their measurement is of prime importance in the investigation of hypoglycaemia, but their quantification is hampered by variable cross-reactivity with many insulin assays. For clinical analysis, it has now become essential to know the potential cross-reactivity of analogues of interest. METHODS: In this work, we performed an extensive study of insulin analogue cross-reactivity using numerous human insulin immunoassays. We investigated the cross-reactivity of five analogues (lispro, aspart, glulisine, glargine, detemir) and two glargine metabolites (M1 and M2) with 16 commercial human insulin immunoassays as a function of concentration. RESULTS: The cross-reactivity values for insulin analogues or glargine metabolites ranged from 0% to 264%. Four assays were more specific to human insulin, resulting in negligible cross-reactivity with the analogues. However, none of the 16 assays was completely free of cross-reactivity with analogues or metabolites. The results show that analogue cross-reactivity, which varies to a large degree, is far from negligible, and should not be overlooked in clinical investigations. CONCLUSIONS: This study has established the cross-reactivity of five insulin analogues and two glargine metabolites using 16 immunoassays to facilitate the choice of the immunoassay(s) and to provide sensitive and specific analyses in clinical routine or investigation

    A novel approach to oral iron delivery using ferrous sulphate loaded solid lipid nanoparticles

    Get PDF
    Iron (Fe) loaded solid lipid nanoparticles (SLN’s) were formulated using stearic acid and iron absorp-tion was evaluated in vitro using the cell line Caco-2 with intracellular ferritin formation as a marker ofiron absorption. Iron loading was optimised at 1% Fe (w/w) lipid since an inverse relation was observedbetween initial iron concentration and SLN iron incorporation efficiency. Chitosan (Chi) was included toprepare chitosan coated SLN’s. Particle size analysis revealed a sub-micron size range (300.3 ± 31.75 nmto 495.1 ± 80.42 nm), with chitosan containing particles having the largest dimensions. As expected,chitosan (0.1%, 0.2% and 0.4% w/v) conferred a net positive charge on the particle surface in a concen-tration dependent manner. For iron absorption experiments equal doses of Fe (20 �M) from selectedformulations (SLN-FeA and SLN-Fe-ChiB) were added to Caco-2 cells and intracellular ferritin proteinconcentrations determined. Caco-2 iron absorption from SLN-FeA (583.98 ± 40.83 ng/mg cell protein)and chitosan containing SLN-Fe-ChiB (642.77 ± 29.37 ng/mg cell protein) were 13.42% and 24.9% greaterthan that from ferrous sulphate (FeSO4) reference (514.66 ± 20.43 ng/mg cell protein) (p ≤ 0.05). Wedemonstrate for the first time preparation, characterisation and superior iron absorption in vitro fromSLN’s, suggesting the potential of these formulations as a novel system for oral iron delivery

    Small Angle Scattering and Zeta Potential of Liposomes Loaded with Octa(carboranyl)porphyrazine

    Get PDF
    In this work the physicochemical characterization of liposomes loaded with a newly synthesised carboranyl porphyrazine (H2HECASPz) is described. This molecule represents a potential drug for different anticancer therapies, such as Boron Neutron Capture Therapy, Photodynamic Therapy and Photothermal Therapy. Different loading methods and different lipid mixtures were tested. The corresponding loaded vectors were studied by Small Angle Scattering (SANS and SAXS), light scattering and zeta potential. The combined analysis of structural data at various length scales and the measurement of the surface charge allowed to obtain a detailed characterization of the investigated systems. The mechanisms underlying the onset of differences in relevant physicochemical parameters (size, polydispersity and charge) were also critically discussed

    Lung inflammation does not affect the clearance kinetics of lipid nanocapsules following pulmonary administration

    Get PDF
    Lipid nanocapsules (LNCs) are semi-rigid spherical capsules with a triglyceride core that present a promising formulation option for the pulmonary delivery of drugs with poor aqueous solubility. Whilst the biodistribution of LNCs of different size has been studied following intravenous administration, the fate of LNCs following pulmonary delivery has not been reported. We investigated quantitatively whether lung inflammation affects the clearance of 50nm lipid nanocapsules, or is exacerbated by their pulmonary administration. Studies were conducted in mice with lipopolysaccharide-induced lung inflammation compared to healthy controls. Particle deposition and nanocapsule clearance kinetics were measured by single photon emission computed tomography/computed tomography (SPECT/CT) imaging over 48 h. A significantly lower lung dose of (111)In-LNC50 was achieved in the lipopolysaccharide (LPS)-treated animals compared with healthy controls (p<0.001). When normalised to the delivered lung dose, the clearance kinetics of (111)In-LNC50 from the lungs fit a first order model with an elimination half-life of 10.5±0.9h (R(2)=0.995) and 10.6±0.3h (R(2)=1.000) for healthy and inflamed lungs respectively (n=3). In contrast, (111)In-diethylene triamine pentaacetic acid (DTPA), a small hydrophilic molecule, was cleared rapidly from the lungs with the majority of the dose absorbed within 20min of administration. Biodistribution to lungs, stomach-intestine, liver, trachea-throat and blood at the end of the imaging period was unaltered by lung inflammation. This study demonstrated that lung clearance and whole body distribution of lipid nanocapsules were unaffected by the presence of acute lung inflammation

    Lipid Nanocapsules Loaded with Rhenium-188 Reduce Tumor Progression in a Rat Hepatocellular Carcinoma Model

    Get PDF
    International audienceBACKGROUND: Due to their nanometric scale (50 nm) along with their biomimetic properties, lipid nanocapsules loaded with Rhenium-188 (LNC(188)Re-SSS) constitute a promising radiopharmaceutical carrier for hepatocellular carcinoma treatment as its size may improve tumor penetration in comparison with microspheres devices. This study was conducted to confirm the feasibility and to assess the efficacy of internal radiation with LNC(188)Re-SSS in a chemically induced hepatocellular carcinoma rat model. METHODOLOGY/PRINCIPAL FINDINGS: Animals were treated with an injection of LNC(188)Re-SSS (80 MBq or 120 MBq). The treated animals (80 MBq, n = 12; 120 MBq, n = 11) were compared with sham (n = 12), blank LNC (n = 7) and (188)Re-perrhenate (n = 4) animals. The evaluation criteria included rat survival, tumor volume assessment, and vascular endothelial growth factor quantification. Following treatment with LNC(188)Re-SSS (80 MBq) therapeutic efficiency was demonstrated by an increase in the median survival from 54 to 107% compared with control groups with up to 7 long-term survivors in the LNC(188)Re-SSS group. Decreased vascular endothelial growth factor expression in the treated rats could indicate alterations in the angiogenesis process. CONCLUSIONS/SIGNIFICANCE: Overall, these results demonstrate that internal radiation with LNC(188)Re-SSS is a promising new strategy for hepatocellular carcinoma treatment

    Enhanced presentation of MHC class Ia, Ib and class II-restricted peptides encapsulated in biodegradable nanoparticles: a promising strategy for tumor immunotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many peptide-based cancer vaccines have been tested in clinical trials with a limited success, mostly due to difficulties associated with peptide stability and delivery, resulting in inefficient antigen presentation. Therefore, the development of suitable and efficient vaccine carrier systems remains a major challenge.</p> <p>Methods</p> <p>To address this issue, we have engineered polylactic-co-glycolic acid (PLGA) nanoparticles incorporating: (i) two MHC class I-restricted clinically-relevant peptides, (ii) a MHC class II-binding peptide, and (iii) a non-classical MHC class I-binding peptide. We formulated the nanoparticles utilizing a double emulsion-solvent evaporation technique and characterized their surface morphology, size, zeta potential and peptide content. We also loaded human and murine dendritic cells (DC) with the peptide-containing nanoparticles and determined their ability to present the encapsulated peptide antigens and to induce tumor-specific cytotoxic T lymphocytes (CTL) <it>in vitro</it>.</p> <p>Results</p> <p>We confirmed that the nanoparticles are not toxic to either mouse or human dendritic cells, and do not have any effect on the DC maturation. We also demonstrated a significantly enhanced presentation of the encapsulated peptides upon internalization of the nanoparticles by DC, and confirmed that the improved peptide presentation is actually associated with more efficient generation of peptide-specific CTL and T helper cell responses.</p> <p>Conclusion</p> <p>Encapsulating antigens in PLGA nanoparticles offers unique advantages such as higher efficiency of antigen loading, prolonged presentation of the antigens, prevention of peptide degradation, specific targeting of antigens to antigen presenting cells, improved shelf life of the antigens, and easy scale up for pharmaceutical production. Therefore, these findings are highly significant to the development of synthetic vaccines, and the induction of CTL for adoptive immunotherapy.</p
    corecore