56 research outputs found

    Hydrocarbon-related microbial processes in the deep sediments of the Eastern Mediterranean Levantine Basin

    Get PDF
    During the 2011 exploration season of the EV Nautilus in the Mediterranean Sea, we conducted a multidisciplinary study, aimed at exploring the microbial populations below the sediment–water interface (SWI) in the hydrocarbon-rich environments of the Levantine basin. Two c. 1000-m-deep locations were sampled: sediments fueled by methane seepage at the toe of the Palmachim disturbance and a patch of euxinic sediment with high sulfide and methane content offshore Acre, enriched by hydrocarbon from an unknown source. We describe the composition of the microbial population in the top 5 cm of the sediment with 1 cm resolution, accompanied by measurements of methane and sulfate concentrations, and the isotopic composition of this methane and sulfate (δ13CCH4, δ18OSO4, and δ34SSO4). Our geochemical and microbiological results indicate the presence of the anaerobic methane oxidation (AOM) coupled to bacterial sulfate reduction (BSR). We show that complex methane and sulfur metabolizing microbial populations are present in both locations, although their community structure and metabolic preferences differ due to potential variation in the hydrocarbon source

    Late Quaternary sea-level change and early human societies in the central and eastern Mediterranean Basin : an interdisciplinary review

    Get PDF
    This article reviews key data and debates focused on relative sea-level changes since the Last Interglacial (approximately the last 132,000 years) in the Mediterranean Basin, and their implications for past human populations. Geological and geomorphological landscape studies are critical to archaeology. Coastal regions provide a wide range of resources to the populations that inhabit them. Coastal landscapes are increasingly the focus of scholarly discussions from the earliest exploitation of littoral resources and early hominin cognition, to the inundation of the earliest permanently settled fishing villages and eventually, formative centres of urbanisation. In the Mediterranean, these would become hubs of maritime transportation that gave rise to the roots of modern seaborne trade. As such, this article represents an original review of both the geo-scientific and archaeological data that specifically relate to sea-level changes and resulting impacts on both physical and cultural landscapes from the Palaeolithic until the emergence of the Classical periods. Our review highlights that the interdisciplinary links between coastal archaeology, geomorphology and sea-level changes are important to explain environmental impacts on coastal human societies and human migration. We review geological indicators of sea level and outline how archaeological features are commonly used as proxies for measuring past sea levels, both gradual changes and catastrophic events. We argue that coastal archaeologists should, as a part of their analyses, incorporate important sea-level concepts, such as indicative meaning. The interpretation of the indicative meaning of Roman fishtanks, for example, plays a critical role in reconstructions of late Holocene Mediterranean sea levels. We identify avenues for future work, which include the consideration of glacial isostatic adjustment (GIA) in addition to coastal tectonics to explain vertical movements of coastlines, more research on Palaeolithic island colonisation, broadening of Palaeolithic studies to include materials from the entire coastal landscape and not just coastal resources, a focus on rescue of archaeological sites under threat by coastal change, and expansion of underwater archaeological explorations in combination with submarine geomorphology. This article presents a collaborative synthesis of data, some of which have been collected and analysed by the authors, as the MEDFLOOD (MEDiterranean sea-level change and projection for future FLOODing) community, and highlights key sites, data, concepts and ongoing debates

    Multiple Geographic Origins of Commensalism and Complex Dispersal History of Black Rats

    Get PDF
    The Black Rat (Rattus rattus) spread out of Asia to become one of the world's worst agricultural and urban pests, and a reservoir or vector of numerous zoonotic diseases, including the devastating plague. Despite the global scale and inestimable cost of their impacts on both human livelihoods and natural ecosystems, little is known of the global genetic diversity of Black Rats, the timing and directions of their historical dispersals, and the risks associated with contemporary movements. We surveyed mitochondrial DNA of Black Rats collected across their global range as a first step towards obtaining an historical genetic perspective on this socioeconomically important group of rodents. We found a strong phylogeographic pattern with well-differentiated lineages of Black Rats native to South Asia, the Himalayan region, southern Indochina, and northern Indochina to East Asia, and a diversification that probably commenced in the early Middle Pleistocene. We also identified two other currently recognised species of Rattus as potential derivatives of a paraphyletic R. rattus. Three of the four phylogenetic lineage units within R. rattus show clear genetic signatures of major population expansion in prehistoric times, and the distribution of particular haplogroups mirrors archaeologically and historically documented patterns of human dispersal and trade. Commensalism clearly arose multiple times in R. rattus and in widely separated geographic regions, and this may account for apparent regionalism in their associated pathogens. Our findings represent an important step towards deeper understanding the complex and influential relationship that has developed between Black Rats and humans, and invite a thorough re-examination of host-pathogen associations among Black Rats

    Post-eruptive flooding of Santorini caldera and implications for tsunami generation

    Get PDF
    Caldera-forming eruptions of island volcanoes generate tsunamis by the interaction of different eruptive phenomena with the sea. Such tsunamis are a major hazard, but forward models of their impacts are limited by poor understanding of source mechanisms. The caldera-forming eruption of Santorini in the Late Bronze Age is known to have been tsunamigenic, and caldera collapse has been proposed as a mechanism. Here, we present bathymetric and seismic evidence showing that the caldera was not open to the sea during the main phase of the eruption, but was flooded once the eruption had finished. Inflow of water and associated landsliding cut a deep, 2.0-2.5 km(3), submarine channel, thus filling the caldera in less than a couple of days. If, as at most such volcanoes, caldera collapse occurred syn-eruptively, then it cannot have generated tsunamis. Entry of pyroclastic flows into the sea, combined with slumping of submarine pyroclastic accumulations, were the main mechanisms of tsunami production

    S1Tables.xls

    No full text
    Supplementary data tables for following article:<br> <b>Offshore Evidence for an undocumented tsunami event in the ‘low risk’ Gulf of Aqaba-Eilat, northern Red Sea</b><br

    Boulder Dislodgement During Coastal Storms and Tsunamis: Insights From a New Ensemble Model

    No full text
    Abstract Boulders are excellent candidate deposits to study coastal inundation events by storms and tsunamis due to their significant preservation potential. However, it is difficult to infer how and what forcing dislodged the boulder. We present a new model that enables ensemble and Monte‐Carlo‐type simulations to study the sensitivity of boulder, the fluid flow, and environmental parameters. Our examples show that boulder transport is complex and nonlinear, and to acknowledge the uncertainties of the boulder's preexisting transport conditions, a range of velocities and environmental parameters should be used to quantify the flow that caused boulder dislodgement

    First Evidence for the Presence of Iron Oxidizing Zetaproteobacteria at the Levantine Continental Margins

    Get PDF
    During the 2010–2011 E/V Nautilus exploration of the Levantine basin’s sediments at the depth of 300–1300 m, densely patched orange-yellow flocculent mats were observed at various locations along the continental margin of Israel. Cores from the mat and the control locations were collected by remotely operated vehicle system (ROV) operated by the E/V Nautilus team. Microscopic observation and phylogenetic analysis of microbial 16S and 23S rRNA gene sequences indicated the presence of zetaproteobacterial stalk forming Mariprofundus spp. – like prokaryotes in the mats. Bacterial tag-encoded FLX amplicon pyrosequencing determined that zetaproteobacterial populations were a dominant fraction of microbial community in the biofilm. We show for the first time that zetaproteobacterial may thrive at the continental margins, regardless of crustal iron supply, indicating significant fluxes of ferrous iron to the sediment-water interface. In light of this discovery, we discuss the potential bioavailability of sediment-water interface iron for organisms in the overlying water column
    corecore