2,950 research outputs found

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum

    Search for excited quarks of light and heavy flavor in gamma plus jet final states in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for excited quarks of light and heavy flavor that decay to gamma + jet final states. The analysis is based on data corresponding to an integrated luminosity of 35.9 fb(-1) collected by the CMS experiment in proton-proton collisions at root s = 13 TeV at the LHC. A signal would appear as a resonant contribution to the invariant mass spectrum of the gamma + jet system, above the background expected from standard model processes. No resonant excess is found, and upper limits are set on the product of the excited quark cross section and its branching fraction as a function of its mass. These are the most stringent limits to date in the gamma + jet final state, and exclude excited light quarks with masses below 5.5 TeV and excited b quarks with masses below 1.8 TeV, assuming standard model like coupling strengths. (C) 2018 The Author(s). Published by Elsevier B.V.Peer reviewe
    corecore