633 research outputs found

    Dark Matter from a gas of wormholes

    Get PDF
    The simplistic model of the classical spacetime foam is considered, which consists of static wormholes embedded in Minkowski spacetime. We explicitly demonstrate that such a foam structure leads to a topological bias of point-like sources which can equally be interpreted as the presence of a dark halo around any point source. It is shown that a non-trivial halo appears on scales where the topological structure possesses a local inhomogeneity, while the homogeneous structure reduces to a constant renormalization of the intensity of sources. We also show that in general dark halos possess both (positive and negative) signs depending on scales and specific properties of topological structure of space.Comment: minor corrections (eq. 18

    The Nature of Dark Matter

    Get PDF
    The observed strong dark-to-luminous matter coupling suggests the existence of a some functional relation between visible and DM sources which leads to biased Einstein equations. We show that such a bias appears in the case when the topological structure of the actual Universe at very large distances does not match properly that of the Friedman space. We introduce a bias operator ρDM=Bρvis\rho_{DM} = B \rho_{vis} and show that the simple bias function b1˜/r2b \~1/r^{2} (the kernel of BB) allows to account for all the variety of observed DM halos in astrophysical systems. In galaxies such a bias forms the cored DM distribution with the radius RCRoptR_{C}\sim R_{opt} (which explains the recently observed strong correlation between RCR_{C} and RoptR_{opt}), while for a point source it produces the logarithmic correction to the Newton's potential (which explains the observed flat rotation curves in spirals). Finally, we show that in the theory suggested the galaxy formation process leads to a specific variation with time of all interaction constants and, in particular, of the fine structure constant.Comment: 12 pages, essential revisio

    Non-minimally coupled dark matter: effective pressure and structure formation

    Full text link
    We propose a phenomenological model in which a non-minimal coupling between gravity and dark matter is present in order to address some of the apparent small scales issues of \lcdm model. When described in a frame in which gravity dynamics is given by the standard Einstein-Hilbert action, the non-minimal coupling translates into an effective pressure for the dark matter component. We consider some phenomenological examples and describe both background and linear perturbations. We show that the presence of an effective pressure may lead these scenarios to differ from \lcdm at the scales where the non-minimal coupling (and therefore the pressure) is active. In particular two effects are present: a pressure term for the dark matter component that is able to reduce the growth of structures at galactic scales, possibly reconciling simulations and observations; an effective interaction term between dark matter and baryons that could explain observed correlations between the two components of the cosmic fluid within Tully-Fisher analysis.Comment: 18 pages, 6 figures, references added. Published in JCA

    Searching for a Cosmological Preferred Axis: Union2 Data Analysis and Comparison with Other Probes

    Full text link
    We review, compare and extend recent studies searching for evidence for a preferred cosmological axis. We start from the Union2 SnIa dataset and use the hemisphere comparison method to search for a preferred axis in the data. We find that the hemisphere of maximum accelerating expansion rate is in the direction (l,b)=(3093+23,1810+11)(l,b)=({309^\circ}^{+23^\circ}_{-3^\circ}, {18^\circ}^{+11^\circ}_{-10^\circ}) (\omm=0.19) while the hemisphere of minimum acceleration is in the opposite direction (l,b)=(1293+23,1811+10)(l,b)=({129^\circ}^{+23^\circ}_{-3^\circ},{-18^\circ}^{+10^\circ}_{-11^\circ}) (\omm=0.30). The level of anisotropy is described by the normalized difference of the best fit values of \omm between the two hemispheres in the context of \lcdm fits. We find a maximum anisotropy level in the Union2 data of \frac{\Delta \ommax}{\bomm}=0.43\pm 0.06. Such a level does not necessarily correspond to statistically significant anisotropy because it is reproduced by about 3030% of simulated isotropic data mimicking the best fit Union2 dataset. However, when combined with the axes directions of other cosmological observations (bulk velocity flow axis, three axes of CMB low multipole moments and quasar optical polarization alignment axis), the statistical evidence for a cosmological anisotropy increases dramatically. We estimate the probability that the above independent six axes directions would be so close in the sky to be less than 11%. Thus either the relative coincidence of these six axes is a very large statistical fluctuation or there is an underlying physical or systematic reason that leads to their correlation.Comment: 10 pages, 7 figures. Accepted in JCAP (to appear). Extended analysis with redshift tomography of SnIa, included errorbars and increased number of axes. The Mathematica 7 files with the data used for the production of the figures along with a Powerpoint file with additional figures may be downloaded from http://leandros.physics.uoi.gr/anisotrop

    Propagation of cosmic rays in the foam-like Universe

    Get PDF
    The model of a classical spacetime foam is considered, which consists of static wormholes embedded in Minkowski spacetime. We examine the propagation of particles in such a medium and demonstrate that a single thin ray undergoes a specific damping in the density of particles depending on the traversed path and the distribution of wormholes. The missing particles are scattered around the ray. Wormholes was shown to form DM halos around point-like sources. Therefore, the correlation predicted between the damping and the amount of DM can be used to verify the topological nature of Dark Matter

    Understanding Galaxy Formation and Evolution

    Get PDF
    The old dream of integrating into one the study of micro and macrocosmos is now a reality. Cosmology, astrophysics, and particle physics intersect in a scenario (but still not a theory) of cosmic structure formation and evolution called Lambda Cold Dark Matter (LCDM) model. This scenario emerged mainly to explain the origin of galaxies. In these lecture notes, I first present a review of the main galaxy properties, highlighting the questions that any theory of galaxy formation should explain. Then, the cosmological framework and the main aspects of primordial perturbation generation and evolution are pedagogically detached. Next, I focus on the ``dark side'' of galaxy formation, presenting a review on LCDM halo assembling and properties, and on the main candidates for non-baryonic dark matter. It is shown how the nature of elemental particles can influence on the features of galaxies and their systems. Finally, the complex processes of baryon dissipation inside the non-linearly evolving CDM halos, formation of disks and spheroids, and transformation of gas into stars are briefly described, remarking on the possibility of a few driving factors and parameters able to explain the main body of galaxy properties. A summary and a discussion of some of the issues and open problems of the LCDM paradigm are given in the final part of these notes.Comment: 50 pages, 10 low-resolution figures (for normal-resolution, DOWNLOAD THE PAPER (PDF, 1.9 Mb) FROM http://www.astroscu.unam.mx/~avila/avila.pdf). Lectures given at the IV Mexican School of Astrophysics, July 18-25, 2005 (submitted to the Editors on March 15, 2006

    Constraints on interacting dark energy models from galaxy Rotation Curves

    Get PDF
    [Abridged] High-resolution N-body simulations have recently shown that the structural properties of highly nonlinear cosmic structures, as e.g. their average concentration at a given mass, could be significantly modified in the presence of an interaction between Dark Energy and Dark Matter. While a constant interaction strength leads to less concentrated density profiles, a steep growth in time of the coupling function has been shown to determine a large increase of halo concentrations over a wide range of masses, including the typical halos hosting luminous spiral galaxies. This determines a substantial worsening of the "cusp-core" tension arising in the standard Λ\Lambda CDM model and provides a direct way to constrain the form of the Dark Energy interaction. In the present paper we make use of the outcomes of some high-resolution N-body simulations of a specific class of interacting Dark Energy models to compare the predicted rotation curves of luminous spiral galaxies forming in these cosmologies against real observational data. Our results show how some specific interacting Dark Energy scenarios featuring a steep growth in time of the coupling function -- which are virtually indistinguishable from LCDM in the background -- cannot fit the observed rotation curves of luminous spiral galaxies and can therefore be ruled out only on the basis of dynamical properties of small-scale structures. Our study is a pilot investigation of the effects of a Dark Energy interaction at small scales, and demonstrates how the dynamical properties of visible galaxies can in some cases provide direct constraints on the nature of Dark Energy.Comment: 15 pages, 3 figures. Accepted for publication in JCA

    Measurement of W Polarisation at LEP

    Get PDF
    The three different helicity states of W bosons produced in the reaction e+ e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to measure the polarisation of W bosons, and its dependence on the W boson production angle. The fraction of longitudinally polarised W bosons is measured to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model expectation

    Measurement of W Polarisation at LEP

    Get PDF
    The three different helicity states of W bosons produced in the reaction e+ e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to measure the polarisation of W bosons, and its dependence on the W boson production angle. The fraction of longitudinally polarised W bosons is measured to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model expectation

    Search for Anomalous Couplings in the Higgs Sector at LEP

    Get PDF
    Anomalous couplings of the Higgs boson are searched for through the processes e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70 GeV < m_H < 190 GeV is explored using 602 pb^-1 of integrated luminosity collected with the L3 detector at LEP at centre-of-mass energies sqrt(s)=189-209 GeV. The Higgs decay channels H -> ffbar, H -> gamma gamma, H -> Z\gamma and H -> WW^(*) are considered and no evidence is found for anomalous Higgs production or decay. Limits on the anomalous couplings d, db, Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H -> gamma gamma and H -> Z gamma decay rates
    corecore