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Abstract

The observed strong dark-to-luminous matter coupling [F. Donato, et al., astro-ph/0403206, Mon. Not. R. Astron. Soc., submitted for publica-
tion; G. Gentile, et al., Mon. Not. R. Astron. Soc. 351 (2004) 903; D.T.F. Weldrake, et al., Mon. Not. R. Astron. Soc. 340 (2003) 12; W.J.G. de
Blok, A. Bosma, Astron. Astrophys. 385 (2002) 816; O. Gerhard, et al., Astrophys. J. 121 (2001) 1936; A. Borriello, et al., Mon. Not. R. Astron.
Soc. 341 (2003) 1109] suggests the existence of a some functional relation between visible and DM sources which leads to biased Einstein equa-
tions. We show that such a bias appears in the case when the topological structure of the actual Universe at very large distances does not match
properly that of the Friedman space. We introduce a bias operator ρDM = B̂ρvis and show that the simple bias function b = 1/(4πr r )θ(r0

2 −rmax)

(the kernel of B̂) allows to account for all the variety of observed DM halos in astrophysical systems. In galaxies such a bias forms the cored
DM distribution with the radius RC ∼ Ropt (which explains the recently observed strong correlation between RC and Ropt [F. Donato, et al.,
astro-ph/0403206, Mon. Not. R. Astron. Soc., submitted for publication]), while for a point source it produces the logarithmic correction to the
Newton’s potential (which explains the observed flat rotation curves in spirals). Finally, we show that in the theory suggested the galaxy formation
process leads to a specific variation with time of all interaction constants and, in particular, of the fine structure constant.
© 2005 Elsevier B.V. Open access under CC BY license.
1. Introduction

The existence of dark matter (DM) has been long known [4].
It represents the most mysterious phenomenon of our Universe
which still did not find a satisfactory explanation in modern
physics. While more than 90% of matter of the Universe has
a non-baryonic dark form, lab experiments show no evidence
for the existence of such matter. The success of (Lambda) Cold
dark matter (CDM) models in reproducing the large-scale struc-
ture is accompanied with a failure in describing the Universe on
smaller scales. Indeed, it is now well established that in galax-
ies the DM density shows an inner core, i.e., a central constant
density region (e.g., see Ref. [2] for spirals and Ref. [3] for
ellipticals and references therein). Such a feature is in clear
conflict with �CDM models which predict the presence of
cusps (ρDM ∼ 1/r) in the inner regions of galaxies [5] (see,
however, a more positive view in Ref. [6]). The situation is
somewhat better for the Milgrom’s algorithm [7] MOND (Mod-
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ified Newtonian Dynamics). However, the existence of a very
strong correlation between the core radius size RC and the stel-
lar exponential scale length RD (or the optical radius Ropt),1

RC � 13 ( RD
5 kpc )

1.05 kpc, e.g., see Ref. [1], rules out MOND
as well. Indeed, according to Milgrom’s algorithm the low ac-
celeration regime triggers off at RMOND, when the gravitation
acceleration g = GM /rgal

2 drops below a fundamental acceler-
ation a0 ∼ 2 × 10−8 cm/s (i.e.,2 R2

MOND ∼ GM /agal 0), and in
general the two parameters RD and RMOND are independent. By
other words there should exist galaxies in which either RD �
RMOND, or RD � RMOND. And indeed an example of such a
galaxy has been recently presented in Ref. [8].

Thus we see that the modern theory of structure formation
faces a rather difficult situation. Main alternatives to CDM,
worm DM and self-interacting DM, seem to be ruled out by
data on large scales (e.g., see Ref. [6] and references therein),

1 Ropt is the radius encompassing 83% of the total luminosity of the galaxy.
In the case of a (stellar) exponential thin disk Ropt is 3.2 times the disk scale
length RD.
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while the distribution of DM in galaxies rules out CDM [1,2]
and MOND [8].

The correlation between the core size RC and the optical
size Ropt in galaxies of different morphological type [1] points
clearly out to the presence of a very strong coupling between
DM halos and baryons which surely requires some new physics.
We recall that such a strong dark-to-luminous matter coupling
(the so-called bias) is actually observed on all scales (e.g., Refs.
[6,9]). In general, this means the existence of a functional de-
pendence or the so-called bias relation T DM

μν = Fμν(Tαβ) be-
tween DM T DM

μν and the visible matter Tμν sources. In the linear
case the bias can be expressed by

(1)T DM
μν = B̂Tμν =

∫
x′<x

Bμν
αβ(x, x′)Tαβ(x′) dΩ ′,

where to save the causality the integration should be taken over
the past-light-cone of the point x. In CDM models the bias re-
lation appears as a result of the non-linear dynamics during the
structure formation and carries a non-linear character, while on
very large scales, where inhomogeneities are still in the lin-
ear regime, such a bias should be viewed as the result of a
generation process of primordial perturbations or merely as a
result of the specific choice of initial conditions. In the present
Letter we consider the simplest case, i.e., the isotropic and ho-
mogeneous Universe with visible matter in the form of dust.
Then the bias operator can be expressed via a single function
B

αβ
μν (x, x′) = (δα

μδ
β
ν + δα

ν δ
β
μ)b(t, x − x′). Moreover, in such a

case the bias function b(t, x − x′) can be fixed from obser-
vational data, e.g., for Fourier transforms the bias relation (1)
gives

(2)T DM
μν (t, k) = B(t, k)T vis

μν (t, k)

which allows to find empirically the bias operator B̂emp. And it
is quite obvious that the empirical bias operator B̂emp (in virtue
merely of its definition) will perfectly describe DM effects at
very large scales (i.e., in the region of linear perturbations). Any
actual specific source of DM (to fit observations) should repro-
duce properties of the bias operator B̂emp in details.

The bias relation allows to re-write the Einstein equations in
the equivalent form

(3)Rμν − 1

2
gμνR = 8πG

(
Tμν + Fμν(Tαβ)

)
.

Now we can forget about the origin of the bias and study
straightforwardly equations in the form (3). The advantage is
that Eq. (3) does not imply the existence of any actual DM
source. Therefore, with the same success we can interpret (3)
as a specific modification of gravity. Most of modifications sug-
gested (e.g., see Refs. [7,10,11]) can be reformulated in the
form (3). In particular, for a point mass at rest Eq. (3) leads
to a modified Newton’s law

(4)φ = −GM0

r

(
1 + f (t, r)

)
,

where in general the correction f (t, r) depends also on the po-
sition of the point source in space. We also note that such a
modification can be equally interpreted as a specific “renormal-
ization” of the gravitational constant G → G(1 + B̂) (e.g., see
Refs. [12,13]).

In the present Letter we discuss the bias relation which ap-
pears in the case when the topological structure of the physical
space (i.e., of the Universe) does not match properly that of
the Friedman space. It was demonstrated recently (e.g., see
Refs. [13,14]) that in this case the standard Newton’s law vi-
olates (there exist a range of scales r0 < r < rmax in which
the gravitational potential has the logarithmic behavior, i.e.,
f (t, r) = r/r0 ln r). We show that the simple bias predicted in
Refs. [13,14] b = 1

4πr0|r−r ′|2 θ(r − rmax) gives a rather good
qualitative agreement with the observed picture of the Uni-
verse at smaller scales. In particular, such a bias allows to relate
together a number of observational facts. Namely, the asymptot-
ically flat rotation curves of spiral galaxies [15] (which indicate
that starting from some length scale r0 the gravity force behaves
as 1/r), the cored distribution of DM density in galaxies [2,3],
the observed very strong correlation between RC and RD [1],
and the fractal behavior in the distribution of galaxies (which
has the dimension D � 2 and is observed at least up to 200 Mpc
[16]). In the view of the modification of the Newton’s law (4)
the last fact indicates that the maximal scale rmax after which
the standard gravity law restores (e.g., it becomes F ∼ 1/r2

again) should be rmax > 200 Mpc [17]).
All these facts are well established and are beyond doubts.

There were some debates in the literature about the fractal dis-
tribution of galaxies [18]. However, the test for the fractality is
rather simple, e.g., if we consider any galaxy, surround it with
a sphere of a radius R, and count for the number of galaxies
N(R) within the radius R, we find the law N(R) ∼ RD . And
the value D is, in turn, not sensible to small perturbations of
the galaxy distribution which may appear due to uncertainties
in distances.2 Moreover, the large-scale structure, e.g., the ex-
istence of huge (∼100–200 Mpc) voids with no galaxies inside
and thin filled with galaxies walls (∼1–5 Mpc), is quite consis-
tent with D � 2. Thus, it is safe to accept the fractal picture, at
least up to 200 Mpc.

2. Origin of the bias

In the present section we show that a non-trivial topological
structure of the physical space can quite naturally give rise to
the origin of the bias [13,14]. Indeed, in considering astrophys-
ical systems we use an extrapolation of spatial relationships
which are well-tested on considerably smaller scales. There-
fore, if the topological structure of the actual Universe at very
large distances does not match properly that of the Friedman
space (the open, flat, or closed model) we naturally should ob-
serve some discrepancy. To describe such a discrepancy we first
consider an example from solid state physics.

2 The misunderstanding may appear if one performs an averaging over the
central position of the sphere in space. In this case one gets nothing but the
trivial result D ≈ 3.
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Consider a medium of a low density at very small tempera-
tures. From the thermodynamics we know that most of systems
at a sufficiently small temperature acquire a crystal structure.
However, in actual systems such a crystal has never an ideal
character but includes different distortions. Moreover, when a
system has a rather low density and the rate of freezing is rapid
enough, such a system will include considerable voids and the
spatial distribution of particles in the system acquires, in turn,
quite irregular character. Elementary excitations (or quasipar-
ticles, e.g., electrons of the conductivity, phonons, etc.) in the
given system do exist only within the crystal and from their
point of view the physical space (the crystal) possesses a rather
non-trivial topological structure. From the mathematical stand-
point the non-trivial topological structure can be accounted for
as follows.

Consider a volume V in R3 occupied with a system and
let H be the Hilbert space for a free particle (the space of
functions on V ). Let {gk(x)} (x ∈ V ) be an arbitrary basis
in H . Physically, the basis represents a set of eigenvectors for
a complete set of observables. E.g., for a scalar (without the
spin) particle we can use the coordinate representation (i.e.,
gk(x) = δ(xk − x) is the set of eigenvectors for the position
operator X̂gk = xkgk , xk ∈ V ) or the momentum representa-
tion (gk(x) = (V )−1/2 exp(ikx), so that P̂ gk = kgk). The ba-
sis is supposed to be normalized (gk, gp) = δkp and complete∑

g∗
k (x)gk(x

′) = δ(x − x′), where x, x′ ∈ V . The fact that our
system has an irregular distribution in V (i.e., V includes also
voids) means that some states in H cannot be physically real-
ized for particles of the system (at least for small temperatures
when the structure of the crystal does not change). Thus, we
have to restrict the space of states H to the space of phys-
ically admissible states Hphys = K̂H , where K̂ = (K̂)2 is a
projection operator. In the basis of eigenvectors the projection
operator K̂ takes the diagonal form (fi, K̂fk) = Kik = Nkδik

with eigenvalues Nk = 0,1. Thus, an arbitrary (but physically
realizable) state of a particle is biased and can be presented as
ψphys = K̂1/2ψ = ∑√

Nkakfk(x). Thus we see that topologi-
cal structure of the system is described by the bias (projection)
operator K̂ . In particular, all physical observables acquire the
structure Ôphys = K̂1/2ÔK̂1/2, while the physical space Vphys

of the system represents the space of eigenvalues xk ∈ Vphys of

the biased position operator of a particle X̂phys = K̂1/2X̂K̂1/2.
In the example described the bias operator is diagonal in

the coordinate representation (i.e., Nk = 0, when xk belongs to
voids and Nk = 1 as xk belongs to the crystal). However, we can
also consider a more general case when K̂ and X̂ do not have
common eigenvectors (i.e., [K̂, X̂] �= 0). In the last case the spa-
tial structure of the crystal remains unspecified. This means that
in such a system the position operator cannot be a good ob-
servable (at least while the topological structure of the system
conserves, i.e., Kik = const, which is always fulfilled at suffi-
ciently small temperatures). We also note that from the point of
view of the mathematical coordinate space (i.e., R3) the space
Hphys is not complete, i.e.,

∑
Nkf

∗
k (x)fk(x

′) = K(x,x′) =
K̂1/2δ(x − x′)K̂1/2 �= δ(x − x′). Thus, we see that the func-
tion K(x,x′) plays here the role of the delta function. And
only in the case when both K̂ and X̂ can be diagonalized si-
multaneously the biased delta function K(x,x′) reduces to the
ordinary delta function K(x,x′) = δ(x − x′)θ(x,Vphys), where
θ(x,Vphys) is a characteristic function, i.e., θ(x,Vphys) = 0 as
x /∈ Vphys and θ(x,Vphys) = 1 as x ∈ Vphys.

At very low temperatures the structure of the crystal con-
serves. This means that the projection operator K̂ represents
an integral of motion (commutes with the Hamiltonian of the
system). Therefore, we can state that elementary excitations
(quasi-particles) represent eigenvectors for the projection op-
erator, i.e., the wave function of an excitation can be expanded
as ψphys = ∑√

Nkakfk(x), while the energy of the system can
be represented as

(5)E =
∑

Nkε(k)a+
k ak,

where ε(k) is the energy of a quasi-particle. Thus, we see that
the non-trivial topological structure of the system defines the
measure (i.e., the density of degrees of freedom) which can be
accounted for by the formal substitution

(6)
∑

k

→
∑

k

Nk

(indeed, the algebra of physical observables modifies as A =
BC → Aphys = BphysCphys = K̂1/2BK̂CK̂1/2 and (BK̂C)ij =∑

k NkBikCkj ). Any point source for quasiparticles is always
biased (as compared to the simple topology case), i.e., acquires
a specific distribution in R3

(7)δ(x − x′) → K(x,x′) = K̂1/2δ(x − x′)K̂1/2,

which reflects the topological structure of the system (the
discrepancy between Vphys and V ). In particular, the actual
physical volume occupied by the crystal is given by Vphys =∫
V

K(x, x′) d3x d3x′ �= V .
The above construction generalizes straightforwardly onto

relativistic particles. In a curved space the one-particle Hilbert
space is not well defined, for particles are actually not free. This
means that in general there is no such an observable as the posi-
tion operator X̂ or the momentum P̂ to classify quantum states.
We recall the well-known fact that even in the flat space the
momentum of a particle can be considered as a good operator,
while the position operator is not. It can be defined though by
means of the Newton–Wigner construction [19]. Thus, in this
case the space of quantum states is constructed as follows.

Consider an arbitrary set of solution to the wave equation3

(8)

(
� + 1

6
R + m2

)
fk = 0

(where �fk = 1√−g
∂α(

√−ggαβ∂βfk)) which obey the normal-
ization conditions

(9)(fk, fj ) = −(
f ∗

k , f ∗
j

) = δkj ,
(
f ∗

k , fj

) = 0,

3 If we require that the topological structure should be invariant under con-
formal transformations, then we should set m = 0 in (8).
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and the scalar product is defined as (e.g., see Ref. [20])

(10)

(f1, f2) = i

∫ (
f ∗

1 (x)∇μf2(x) − f2(x)∇μf ∗
1 (x)

)√−g dΣμ.

Then the space of one-particle quantum states H 1 is defined as
the space of “positive frequency” solutions {fk}. And again in
simple cases a non-trivial structure of the physical space can
be accounted for by the fact that some of one-particle quantum
states cannot be physically realized, i.e., we should project the
space of states H 1 to the space of physically admissible states
H 1

phys = K̂H 1. In general, the projection (bias) operator distin-
guishes a particular (preferred) basis {fk} in terms of which it
can be presented as4

(11)Kφ(x, x′) =
∑

Nk

(
fk(x)f ∗

k (x′) − f ∗
k (x)fk(x

′)
)
,

with eigenvalues Nk = 0,1. Thus, physical fields can be defined
as biased fields

(12)φphys = K̂
1/2
φ φ =

∑√
Nk

(
akfk(x) + a+

k f ∗
k (x)

)
,

and the non-trivial topological structure of space is reflected in
the fact that some modes never enter the expansion (12) (i.e., for
which Nk = 0). And again any physical observable (i.e., every
operator) can be expressed as Ôphys = K̂1/2ÔK̂1/2. E.g., in the
case of a scalar field the mean value for the stress energy tensor
is biased as

〈nk|T phys
αβ |nk〉 = 〈nk|K̂1/2TαβK̂1/2|nk〉

(13)=
∑

k

Nk(1 + 2nk)Tαβ

[
fk(x), f ∗

k (x)
]
,

where Tαβ [φ,φ] is given by the bilinear form

(14)Tαβ [φ,φ∗] = φ,αφ∗
,β − 1

2
gαβ

(
gμνφ,μφ∗

,ν − m2φφ∗)
and |nk〉 = ∏

(nk!)−1/2(a+
k )nk |0〉. The Green functions for the

physical scalar field (e.g., Feynman propagator iGF(x, x′) =
〈0|T φphys(x)φphys(x

′)|0〉) obey formally the standard equation

(15)
(
� + m2)GF(x, x′) = Δ(x,x′) �= −(−g)−1/2δ(x − x′).

However, the r.h.s. of this equation is not the delta function
any more but physical or biased delta function (7) (i.e., in
terms of the coordinate space it acquires an additional dis-
tribution in space Δ(x,x′) = −K̂

1/2
φ (−g(x))−1/4δ(x − x′) ×

(−g(x′))−1/4K̂
1/2
φ ). In this manner we see again that the role of

the bias operator (and that of the structure of the physical space)
is the specification of the density of degrees of freedom (6).

In conclusion of this section we point out to the two impor-
tant facts. The first is that the bias (11) includes a non-linear
dependence on the metric gαβ via the solution of Eq. (8). And
the second is that the projection operator (bias) discussed above
restricts strongly the topological structure of the physical space.
Indeed, by the construction the projection K̂ = (K̂)2 means

4 We note that the operator Kφ defined in (11) acts in the space of fields φ(x).

In the one-particle Hilbert space it has the standard form K̂ = ∑
Nk |1k〉〈1k |.
that the physical space Vphys represents a subspace in R3 (i.e.,
Vphys ⊂ R3 or in cosmology it should represent a subspace of
the Friedman space). In the most general case, however, such an
embedding may not exist. By other words, an arbitrary physical
space (of an arbitrary topological structure) cannot be projected
to the Friedman space (or R3) without self-intersections (i.e.,
K̂ �= (K̂)2). This, in turn, leads to a generalization of the bias
operator (11) to the more general case (e.g., see Refs. [13,14])
which naturally leads to the generalized statistics of particles.
From the formal standpoint such a generalization is expressed
by the fact that eigenvalues Nk of the bias operator K̂ can
be arbitrary integer numbers Nk = 0,1,2, . . . (N2

k �= Nk and
K̂ �= (K̂)2).

To illustrate the last statement we can consider an exam-
ple from solid state physics. Suppose that the system discussed
in the beginning of this section has locally a two-dimensional
character (i.e., locally Vphys represents a two-dimensional crys-
tal). Then we can attempt to describe such a system in terms
of R2. If we project Vphys onto R2, then we find that in the
case of an arbitrary topology of the two-dimensional crystal
Vphys the bias operator will have eigenvalues Nk = 0,1,2, . . . .
E.g., if K̂ is the diagonal in the position representation (i.e.,
[K̂X̂] = 0), then Nk is merely the number of different points of
the crystal (i.e., the number of two-dimensional sheets) which
correspond to the point xk ∈ R2. All such points, however, have
different positions in R3, i.e., they differ in the extra coordinate
za
k (a = 1,2, . . . ,Nk) orthogonal to R2. However, if the Hamil-

tonian of the system does not include the extra coordinate zk , it
is not measurable (without additional means) and states, which
differ in the extra coordinate only, become physically indistin-
guishable and quasi-particles will obey a generalized statistics.
In particular in the given example Nk gives the maximal num-
ber of electrons which can occupy the same position xk ∈ R2.
For more details see also Refs. [14,21].

In this manner we see that a non-trivial topological structure
of the physical space (as compared to the coordinate space) can
indeed produce a specific bias of all observables. We note that
in this case the field theory does not change at all, i.e., the math-
ematical structure of equations of the motion (e.g., the Einstein
equations) remains the same. What is actually modified here
is spatial properties of physical fields5 which are expressed by
expansions of the type (12). In particular, every discrete point
source (e.g., a galaxy or a star) is not the Dirac delta func-
tion any more but acquires a specific distribution in space (e.g.,
see (7)) which reflects the topological structure of the physical
space (the density of degrees of freedom Nk).

3. The bias function b(r)

In what follows we, for the sake of simplicity, restrict our
consideration to the Newtonian limit (for the range of applica-
bility of this limit see, e.g., Ref. [22]). In a homogeneous and
isotropic Universe the set of solution (9) can be taken in the

5 In general physical fields should be understood as generalized fields
Ref. [21].
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form fk = (2π)−3/2gk(t)e
ikr (i.e., states of particles can be

classified by wave numbers k), while the density of states Nk is
an arbitrary function of |k|. If we assume that topology transfor-
mations have stopped after the quantum period in the evolution
of the Universe, then the function Nk will depend on time via
only the cosmological shift of scales, i.e., k(t) ∼ 1/a(t) (where
a(t) is the scale factor). Thus, any point source undergoes the
bias

(16)δ(�r) → Δ(�r, t) = 1

2π2

∞∫
0

(
Nkk

3) sin(kr)

kr

dk

k
.

The case of a simple topology corresponds to Nk = 1, while
in a non-trivial case (Nk − 1 �= 0) every point mass M0 is sur-
rounded with an additional spherical “dark” halo

(17)

ρDM(r, t) = M0b(r, t) = M0

2π2

∞∫
0

(
Nk(t) − 1

)
k3 sin(kr)

kr

dk

k
,

and the Newton’s potential modifies as

(18)φ = −GM0

r

(
1 + f (r, t)

)
,

where the correction f (r, t) relates to the bias function b(r, t)

according to (f (r, t)′ = ∂f/∂r)

(19)b(r) = −f (r, t)′′

4πr
.

Thus, the relation between visible matter ρvis and DM is indeed
given by (1) which in the Newtonian limit for the homogeneous
and isotropic Universe reduces to

(20)ρDM(�r, t) = B̂ρvis =
∫

b
(|�r − �r ′|, t)ρvis(�r ′, t) dV ′.

The explicit specification of the bias function b(r, t) is, in the
first place, the problem of observational cosmology. Indeed, for
Fourier transforms there is a linear relation between DM and
visible sources

(21)ρDM(�k, t) = b(�k, t)ρvis(�k, t),

which allows to find empirically the bias operator B̂emp (we
recall that the total source ρtot = ρDM + ρvis can be restored
from the measured spectrum of �T/T in CMB [23] and the
observed peculiar velocity field). It is quite obvious that such
an empirical bias operator B̂emp (in virtue merely of its defini-
tion) describes perfectly DM effects at very large scales (where
inhomogeneities have the linear character). The non-trivial mo-
ment here is that all theories which predict the same bias b(r, t)

for the modern Universe are observationally indistinguishable
(at least it requires involving more subtle effects). We also
note that in the more general case the bias relations should be
described by two functions ρDM = bρρvis and pDM = bppvis
(where p is the pressure) which for a homogeneous distribution
reduce merely to functions of time b′

ρ,p(t). Thus, the bias rela-
tions give the possibility to account for dark energy as well (i.e.,
the observed6 accelerated expansion of the Universe [24]).

A specific feature of CDM models is that the relation be-
tween the two sources appears as a result of the dynamics and,
therefore, the effective bias function b(r, t) carries in general
a non-linear character. The “great” success of CDM models
in reproducing the large-scale structure (LSS) of the Universe
is somewhat exaggerated, for at very large scales density per-
turbations are still at the linear stage of the development and,
therefore, the bias bemp(�k, t) straightforwardly defines the set
of appropriate initial conditions bemp(�k, t) = D(t)b0(�k) (where
b0(k) = ρ0

DM(�k)/ρ0
vis(

�k) and D(t) accounts for the evolution of
perturbations) depending on the exact behavior of the scale fac-
tor a(t). In this sense LSS alone in principle cannot distinguish
a model. On the contrary, at smaller scales (e.g., in galaxies and
clusters) perturbations are in a strongly non-linear regime, the
bias operator B̂ acquires a non-linear dependence on the distri-
bution of matter and CDM models fail [2,3].

Leaving the problem of the empirical determining of B̂

aside, in what follows we consider a model expression for the
bias b(r)

(22)b(r) = 1

4πr0r2
θ(r − rmax),

where θ(x) is the step function. b(r) produces the correction to
the Newton’s potential (18) of the form

(23)f (r) =
{ r

r0
ln(rmaxe/r), as r � rmax,

rmax
r0

, as r > rmax.

Such a bias was derived in Refs. [13,14] for the case of a ho-
mogeneous and isotropic Universe under the assumption that
the topological structure (i.e., the number density of degrees
of freedom Nk) of the early Universe is described merely by
the thermal equilibrium state.7 Presumably, topology changes
have occurred during the quantum stage of the evolution of the
Universe and at present are strongly suppressed. This means
that after the quantum period the topological structure remains
constant. Therefore, the isotropic cosmological expansion is ac-
companied only with the cosmological shift of the parameters
r0 and rmax (i.e., r0,max(t) = a(t)r̃0,max) without any change in
the form of the bias function (22).

After the radiation dominated stage, however, the small ini-
tial adiabatic perturbations (which are directly measured in
CMB, e.g., by WMAP [23]) start to grow and considerably
shrink the Universe from galactic to supercluster scales. The
latter results in the further transformation of the bias function
b(|x − x′|) → b(|x − x′|, x′, t). To derive rigorously the bias in
a general inhomogeneous case we have to construct a set of ex-
act solutions to the wave equation (8) which in turn depend on
the distribution of matter and, therefore, on the bias. In the sim-
plest case, however, the inhomogeneity of the Universe can be

6 We point out, however, that the accelerated expansion cannot be considered
as an established fact yet, for the presence of considerable uncertainties of a
theoretical character.

7 We note that the actual bias depends on the specific picture of topology
transformations in the early Universe and may differ from (22).
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accounted for by an additional dependence of the parameters
of the bias function (22) on the position in space. Indeed, the
adiabatic growth of density perturbations can be viewed as if
the rate of the expansion were different in different parts of the
Universe a(t) → a(t, x) which produces the respective shifts
r0,max(t, x) ∼ a(t, x)r̃0,max. Such an additional shift is consid-
erable indeed, e.g., the mean density of our Galaxy has the order
ρg ∼ 106ρcr (while the density behaves as ρ ∼ 1/a3) and there-
fore for our Galaxy rg0 should be less in 102 times, than the
respective mean parameter r0 for the homogeneous Universe.

4. The bias function and dark matter halos

It is rather surprising that already the simplest function (22)
shows a rather good qualitative agreement with the observed
picture of the present Universe. First of all, it is consistent with
the observed cored distribution of DM in galaxies [2,3]. Indeed,
if ρvis(r) is a rather smooth monotonously decreasing function
of r , then from (22) and (20) we find that DM density reaches
the maximal value in the central region of a galaxy (i.e., as
r � RD, where RD has the order of the stellar exponential scale
length)

(24)ρDM(r) � ρDM(0) =
∫

1

4πr0r ′2
ρvis(�r ′, t) dV ′,

while for r � RD we find ρDM(r) � Mvis/(4πr0r
2) (where

Mvis = ∫
ρvis dV ) which can be combined by the interpolation

formula

(25)ρDM(r) = ρDM(0)
R2

C

R2
C + r2

,

where R2
C = Mvis/(4πr0ρDM(0)) � α2R2

D, which explains the
observed strong correlation between RC and RD [1]. We note
that the actual value of the ratio RC/RD = α depends on the
distribution of the visible matter in a galaxy ρvis(�r, t) and the
definition of RD (e.g., if we assume in (24) that ρvis = ρ̄ within
the ball r < RD, then α2 = 1/3).

The bias (22) shows also that in the interval of scales r <

rmax the dynamical mass of a point source increases with the
radius as Mdyn = M0(1 + r/r0), while for r > rmax it acquires
a new constant value Mmax ∼ M0(1 + rmax/r0) and the ratio
rmax/r0 defines the fraction of DM in the total (baryons plus
dark matter) density.

The minimal scale r0 is different for different galaxies (i.e.,
r0 = r0(x) is a slow function of the position) and it has the or-
der r0 ∼ 1–5 kpc (it is the scale at which DM starts to show
up), while the value of rmax is not so well fixed by obser-
vations. The analysis of the mass-to-light ratio M/L shows
that it increases with scales for galaxies and groups but flat-
tens eventually and remains approximately constant for clusters
(e.g., see Ref. [25]). This gives an estimate rmax � 1–5 Mpc
or rmax/r0 � 103. Such a fraction of DM is indeed observed
in LSB (Low Surface Brightness) galaxies in which the ratio
can reach M/L ∼ (200–600)M�/L�. It, however, looks incon-
sistent with predictions of CDM models and observed peculiar
velocities in clusters which favor ρDM/ρb ∼ 20. The most dras-
tic estimate comes from the observed fractal distribution of
galaxies which suggests rmax � 200 Mpc and rmax/r0 � 105

[17]. We, however, note that the absolute boundary for rmax is
given by the Hubble radius rmax � RH which gives rmax/r0 �
RH/r0 ∼ 106–107, while all values rmax � RH are indistin-
guishable from observations.

It turns out, however, that all those estimates are consistent
with each other and give only the lowest boundary for the DM
fraction, for in any system some essential portion of DM forms
an inner core (i.e., the central constant density region) and does
not contribute to the local dynamics. Indeed, DM consists of
spherical halos (17) around every point source and, therefore,
the relationship between the baryon density and DM has a non-
local nature with the characteristic scale rmax. The density of
DM in a point of space (and, respectively, the local dynamics)
is formed by all sources within the sphere of the radius rmax and
it depends essentially on the distribution of the sources. E.g., if
we take ρvis(x, t) = ∑

a Maδ(Ra), then from (20) and (22) we
get for DM density

(26)ρDM(x, t) =
∑

Ra�rmax

Ma

4πr0R2
a

� rmax

r0

〈ρvis〉
3

,

where Ra = |x − xa(t)| and 〈ρvis〉 = ∑
Ra<rmax

Ma/(
4
3πr3

max)

is the mean density of the visible matter within the sphere of
the radius rmax. For a uniform distribution of matter this reads
〈ρDM〉 = (rmax/r0)〈ρvis〉. From (26) we see that the DM density
reaches the minimal possible value 1

3 〈ρDM〉 in the case when all
sources are at the distance Ra = rmax (e.g., in the center point
of a void), while according to (25) at a source Ma it has a local
maximum ρDM � (�a/r0)〈ρa〉/3 (where �a is a characteristic
dimension of the source and 〈ρa〉 = 3Ma/4π�3

a).
Eq. (26) shows that DM halos smooth the observed strong

inhomogeneity in the distribution of baryons which consider-
ably reduces the inhomogeneity in the total density. By other
words, a considerable portion of DM acquires the cored (25)
(i.e., the quasi-homogeneous) character and switches off from
the local dynamics. This, in turn, leads to a renormalization of
the maximal scale rmax → R∗ in (22) and, therefore, changes
the fraction of DM observed in a system ρ′

DM/ρb ∼ R∗/r0. In
such a picture the scale R∗ is a specific parameter of a system
and this explains the small value for the ratio R∗/r0 observed
in clusters.

Indeed, consider a group of galaxies of the characteristic di-
mension L. Such a group can be characterized by the mean
density 〈ρDM〉L = (1/L3)

∫
ρDM(x, t) d3x and perturbations

δDM(x, t) = ρDM(x, t)/〈ρDM〉L − 1. Near a particular galaxy
in the group (rg(t) = 0 and Mg � ∑

Ma) we find from (26)

(27)δDM(r) � R2∗
r2

− 1,

where R∗ is the effective size R∗ of the DM halo

(28)
R2∗
r2

0

= Mg

4πr3
0 〈ρDM〉L

.

For r > R∗ we see that δDM < 0 and in the interval L > r > R∗
this function oscillates around the zero point (the exact behavior
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depends on the distribution of galaxies in the group and is not
important).

The homogeneous background contributes only to the local
Hubble flow which can be accounted for by the expanding ref-
erence frame x = a(t)r (e.g., see Ref. [22]). Thus, the actual
Newton’s potential of the galaxy takes the form

(29)δφ(r, t) = −Ga2
(

Mg

r
+ δFDM(r, t)

)
,

with

δFDM(r, t) =
∑

i

Mi

f (|r − ri(t)|)
|r − ri(t)| + 2

3
π〈ρDM〉Lr2

(30)= Mg

f (r,R∗)
r

+ μ(r, t)

where we subtracted the homogeneous component δφ = φ −
〈φ〉L (with 〈φ〉L = 2

3πGa2〈ρ〉Lr2) [22], μ(r, t) accounts for
variation of δDM for r > R∗, and f (r,R∗) is given by (23) with
the replacement rmax → R∗. The function δFDM defines the
contribution of the DM halo and we recall that the use of the
empirical bias function bemp(r, r

′, t) (or equivalently f (r, t))
automatically reproduces all actual DM halos in astrophysical
systems.

Thus, we see that near a source the function δFDM has
the logarithmic behavior.8 At the distance R∗ the logarithm
switches off and the ratio R∗/r0 defines the maximal value
for the DM mass in a galaxy or a cluster which can be ob-
served from the local dynamics. We recall that the value r0 is
different for different galaxies. In addition to this fact, the ex-
pression (28) shows the general tendency that the ratio R∗/r0
(and therefore the maximal discrepancy between the dynamical
mass and luminous matter) is smaller in high density regions of
space and larger in low density regions. This qualitative feature
agrees with discrepancies observed in LSB and HSB galax-
ies.

5. The background distribution of baryons and rmax

Consider now properties of the homogeneous and isotropic
background. In the standard models there exist the only case
which corresponds to the homogeneous distribution of baryons.
If we accept the bias of wave equations (15), there appears a
new possibility. Indeed, the homogeneity of the Universe (or the
cosmological principle) requires the total distribution of matter
(baryons plus dark halos) to be homogeneous, while properties
of the baryon distribution are not fixed well. The latter may
have a quite irregular character. Exactly, such a situation takes
place in the case of a fractal distribution of baryons. Consider a
sphere of a radius r . Then the total mass within the radius r is
given by

(31)Mtot(r) � mb

(
1 + r

r0

)
Nb(r) + δM(r),

8 We note that in the presence of a continuous medium (e.g., of gas) the be-
havior may essentially change.
where Nb(r) is the actual number of baryons, mb is the baryon
mass, and δM(r) accounts for corrections and, in particular,
for the contribution of dark halos of baryons from the outer
region. The homogeneous distribution means that the total mass
behaves as Mtot(r) = 〈ρ〉V (r) ∼ r3. And for r � r0 this can be
reached by the fractal law N(r) ∼ rD with D ≈ 2 (the exact
equality cannot be reached, for the presence of the additional
term δM(r)). Such a law works up to the scale rmax upon which
the distribution of baryons crosses over to homogeneity.9

There exists at least two strong arguments in favor of the
fractal distribution of baryons. The first argument is that the
fractal distribution is more stable gravitationally. Indeed, let us
fix the total density Ωtot = ρtot/ρcr ∼ 1 (where ρcr is the critical
density) and the baryon fraction ρb/ρtot ∼ r0/rmax. In the case
of the fractal distribution this fraction reaches only at scales
r � rmax, while at smaller scales baryons are distributed rather
irregularly.

Consider first a homogeneous distribution of baryons. Now
if we consider a small displacement of a particular baryon (or
of a homogeneous group of baryons), then such a displace-
ment will produce the same displacement of the dark halo (at-
tached to the baryon). So the resulting perturbation increases in
rmax/r0 times. The maximal scale rmax should be larger than
100–200 Mpc, and therefore the increase should be more than
105–106. In the primordial plasma the domination of radiation
prevent the growth of perturbations in the gravitational poten-
tial and, therefore, such fluctuations are strongly suppressed.
However, there also do exist collective fluctuations in the den-
sity of baryons which do not affect the metric perturbations10

and the total density of matter. According to (15) such fluc-
tuations do not affect the total (effective) charge density and,
therefore, the radiation dominated stage cannot prevent a spe-
cific redistribution of baryons. By other words perturbations of
such a type could increase long before the recombination. They
do not change the total density δρtot = δρb + δρDM = const and
can be called compensational sound waves. In the very early
Universe high temperatures transform baryons from the more
constrained state which corresponds to a homogeneous distri-
bution of baryons to the less constrained and more stable state
which corresponds to the fractal distribution. We note, however,
that during the radiation dominated stage when δρb + δρDM ≈ 0
and Ωb +ΩDM ∼ 1 perturbations in the baryon number density
cannot grow to an arbitrary large value, but are restricted by
Ωb � 1 (i.e., δρb/ρb � ρtot/ρb ∼ rmax/r0).

Consider now the case of the fractal distribution. According
to (31) the fractal distribution of dark halos forms the homo-
geneous background of the total density. Now any small dis-
placement of a baryon does not change the character of the

9 The distribution of stars in galaxies shows also a fractal behavior. In this
sense we can say that the fractal law forms the cored distribution (25) with
RC ∼ RH.
10 The presence of metric perturbations at some level �ρtot/ρtot ∼ 10−5 is
essential however, otherwise the fractal structure in baryonic matter will not
form. For fluctuations the bias relation reads �ρDM = B�ρvis − 〈B�ρvis〉 =
F�ρvis, which defines a new operator F . Thus, fluctuations which obey
(F − 1)�ρvis ≈ 0 do not affect the metric and �ρtot ≈ const.
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dark halos distribution and, therefore, the increase is essentially
suppressed (rmax/r0 → R∗/r0). By other words the stable equi-
librium distribution can be defined as such a distribution of
baryons for which perturbations in the baryon density produce
the minimal response in the total density. The bias of the elec-
tromagnetic field (15) insures the absence of strong fluctuations
in the CMB temperature caused by the fractal distribution of
baryons. This may be used to estimate the value of the fraction
rmax/r0.

Indeed, the first estimate comes from the upper boundary
for the scale of the cross-over to the homogeneity in the ob-
served galaxy distribution rmax � 100–200 Mpc which gives
rmax/r0 � 105. From the other side, the observed CMB gives
�T/T = 1

3�ρtot/ρtot ∼ 10−5 at the moment of recombination,
and the fractal distribution causes perturbations in the total den-
sity �ρtot ∼ (R∗/r0)ρb (where the factor R∗/r0 appears as
the contribution from dark halos) and therefore �ρtot/ρtot �
(R∗/r0)ρb/ρtot ∼ R∗/rmax � 10−5. We see that both estimates
agree and give rmax/r0 � (R∗/r0)×105. As it was shown above
the ratio R∗/r0 takes the minimal value for the equilibrium frac-
tal distribution. So that the value rmax (which is the scale of
the cross-over to the homogeneity in the visible matter) will in-
crease, if at the moment of the recombination the ideal fractal
distribution had not been achieved yet.

The second argument is based on a more correct inter-
pretation of the dark matter effects. Indeed, the bias of the
wave equation (15) should be understood as the fact that at
large scales our Universe possesses a rather unusual geomet-
ric (or topological) properties. These geometric properties are
reflected in the behavior of the Green function (15) which for
r > r0 acquires effectively the two-dimensional character (e.g.,
for Nk ∼ 1/(kr0) we get G(r, τ ) ∼ 1

rr0
ln(τ − r)/(τ + r)) and,

therefore, such a geometry should be reflected in the distri-
bution of matter (sources). By other words, at scales r > r0
our Universe acquires an effective dimension D ≈ 2 (e.g., see
Ref. [14]) which explains the two-dimensional character of the
spatial distribution of baryons. By other words we may imagine
that our Universe represents a fractal (the space is “more dense”
on a fractal set than outside (e.g., see Ref. [14])) and within such
a fractal the matter has a homogeneous distribution. In such a
picture the fractal distribution is the only thermal equilibrium
state. We note that in the case rmax < ∞ such a state can never
be utterly homogeneous but always includes equilibrium fluc-
tuations of the order �ρtot/ρtot ∼ r0/rmax.

6. Variation of interaction constants

In the present section we show that the structure formation
in the present Universe leads to a specific variation with time
of all interaction constants. As an example we consider the
variation of the gravitational constant. Indeed, the cosmologi-
cal evolution is described by the scale factor a(t) which obey
the equation [22] (we consider the case p = 0)

(32)
d2a

dt2
= −4πG

3
〈ρtot〉a = −4πG

3

(
1 + rmax

r0

)
〈ρvis〉a.
This equation can be interpreted as if the gravitational constant
renormalizes as G → G̃ = G(1+ rmax/r0) (we recall that in the
inhomogeneous case it depends on scales as well).

The mean density of the visible matter behaves as 〈ρvis〉 ∼
1/a3. Thus, the evolution of the scale factor a(t) depends essen-
tially on the behavior of the ratio rmax/r0. During the radiation
dominated stage 〈ρtot〉 = 〈ργ 〉, the growth of density pertur-
bations is suppressed and therefore the bias function (22) in
the comoving frame (i.e., in the expanding reference system
x = ar) does not change. Thus, during the radiation dominated
stage the ratio rmax/r0 = const. This remains true and on the
subsequent stage, while inhomogeneities in the total density
remain small δ = �ρtot/ρtot � 1. The situation changes dras-
tically when the inhomogeneities reach the value δ ∼ 1. Upon
this moment the time shifts of the two scales r0 and rmax dis-
agree. Small scale inhomogeneities develop first and switch off
from the Hubble expansion. This leads to the monotonic in-
crease of the effective gravitational constant G̃, i.e., of the ratio
rmax/r0 ∼ aβ , which gives for the matter density 〈ρtot〉 ∼ aβ−3.
While inhomogeneities remain small δ � 1, both scales in-
crease with time as r0, rmax ∼ a, and the exponent β ∼ 0. When
δ reaches the value δ � 1 the scale r0 starts to collapse (galax-
ies start to form), while rmax is still increasing rmax ∼ a. This
leads to the fact that the exponent becomes β > 1 and DM be-
haves as “dark energy”, e.g., in the case β = 3 DM behaves as
the negative lambda term Λ = −4πG〈ρDM〉 = const. This kind
of regime ends either when the collapse of the scale r0 ends
(galaxies have stabilized and r0 � const and G̃ ∼ a), or when
the maximal scale rmax sufficiently deviates from the Hubble
law rmax ∼ a.

The behavior of the minimal scale r0 follows the local dy-
namics and can be estimated as r0 ∼ δ

−1/3
0 ar̃0, where δ0 is

the mean perturbation within the radius r0 and the parame-
ter r̃0 = const. Analogously, the maximal scale is given by
rmax ∼ δ

−1/3
max ar̃max, which gives rmax/r0 ∼ (δmax(t)/δ0(t))

−1/3

and therefore the effective gravitational constant depends on
time as G̃(t) ≈ G(1+C(δmax(t)/δ0(t))

−1/3), where C is a pos-
itive constant.

The fact that the bias operator reflects the topological struc-
ture of space means that all interaction constants undergo an
additional renormalization (e.g., see Ref. [21]) and acquire the
same dependence on time. E.g., the fine structure constant takes
the form α̃(k, t) = b(k, t)α which gives for homogeneous fields
α̃(t) ≈ α(1 + C(δmax(t)/δ0(t))

−1/3). It is remarkable that a
small variation of the fine structure constant seems to be ob-
served at high red shifts [26].

In conclusion of this section we note that the decrease of the
scale r0(t) during the structure formation can also be used to ex-
plain the apparent acceleration of the Universe which seems to
be required by observations of the type Ia supernovae [24]. In-
deed, according to (15), (16), and (22) at large distances r � r0
the Green functions behave as G ∼ 1/r0 and therefore the ap-
parent luminosity will also behave as L ∼ L0/r0. Thus, the
decrease of the scale r0 will formally look as a very strong
evolutionary effect E = L̇/L ∼ −ṙ0/r0 > 0, which produces
correction q → qeff = q − E/H , e.g., see Ref. [27] (where
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H = ȧ/a and q = −(d2a/dt2)/(aH 2)). Thus, the observed
acceleration q < 0 may merely mean nothing but the strong
evolutionary effect caused by the variation of r0.

7. Conclusion

In conclusion, we briefly repeat basic results. First of
all from the observed strong dark-to-luminous matter cou-
pling [1–3] we derive the existence of a bias relation T DM

μν =
Fμν(T

vis
αβ ) which allows us to re-write the Einstein equations

in the equivalent biased form Rμν − 1
2gμνR = 8πG(Tμν +

Fμν(Tαβ)). The biased Einstein equations straightforwardly
predict the presence of a specific correction to the Newton’s
potential for a point source φ = −GM(1/r + F(r, t)).

The bias may have an arbitrary nature, CDM, MOND, any
modification of gravity, etc., which does not change the phe-
nomenological results of this Letter. We, however, have sug-
gested the bias which naturally appears in the case when the
topological structure of the actual Universe at very large dis-
tances does not match properly that of the Friedman space (the
open, flat, or closed model). In that case not only the gravi-
tational potential but also all other physical fields undergo the
bias and display some discrepancy (i.e., the presence of DM
halos around every point source δ(x − x′) → Δ(x − x′)).

In the linear approximation the bias relation ρDM = B̂ρvis is
described by the function b(r, r ′, t) (the kernel of the bias oper-
ator) which admits the empirical definition. Then bemp(r, r

′, t)
(or equivalently its spectral components b(�k, t)) gives a rather
simple tool for confronting a theory of the structure formation
with observations. Any acceptable theory has to reproduce in
details the specific form of the bias function bemp.

We have demonstrated that a specific choice of the bias
(22) b = 1/(4πr0r

2)θ(r − rmax) (which is predicted by topol-
ogy changes in the early Universe [13,14]) shows quite a good
agreement with the observed picture of the modern Universe
(e.g., the fractal distribution of galaxies, cored DM distribution
in galaxies and rich clusters, variety of DM halos, etc.). It, how-
ever, considerably changes the estimate for the mean density of
baryons 〈ρDM〉/〈ρvis〉 ∼ rmax/r0 (this in turn is not in a con-
flict with observations, for in the standard models the estimate
Ωb ∼ 0.05 is model dependent and uses essentially the idea of
the homogeneous distribution of baryons).

Finally, we have shown that the galaxy formation process
causes a decrease of the minimal scale r0(t) (and the increase
of the ratio rmax/r0) and this gives rise to a specific dependence
on time for all interaction constants. In particular, this may give
an explanation to the observed variation (a small increase) in
the fine structure constant [26].

Note added in proof

As it was pointed out in Section 3 the mean value r0
for the homogeneous Universe should be 102 bigger than the
respective value for galaxies, i.e. 〈r0〉 ∼ 0.1–0.5 Mpc. This
means that if rmax > RH then the baryon fraction has the or-
der Ωb ∼ r0/RH ∼ 10−5. It is remarkable that observed values
of �T/T ∼ 10−5 are quite consistent with such fraction and
the primeval equilibrium fractal distribution of baryons which
gives for fluctuations �ρtot/ρtot ∼ r0/RH ∼ �T/T . Thus, in
the theory presented the baryon fraction and CMB fluctuations
are strongly correlated Ωb ∼ �T/T .
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