239 research outputs found
Tactile display device using an electrorheological fluid
A tactile display device utilizes an electrorheological fluid to activate a plurality of tactile dots. A voltage is selectively produced uniformly across an electrorheological fluid flowing between a common ground electrode and a plurality of conductive dot electrodes, thereby producing an increase in the fluid's viscosity to the extent that fluid flow between the two electrodes is restricted. The flow restriction produces a build-up of electrorheological fluid in a corresponding dot actuator chamber. The resulting pressure increase in the chamber displaces an elastic diaphragm fixed to a display surface to form a lump which can be perceived by the reader as one dot in a Braille character cell. A flow regulation system provides a continually pressurized flow system and provides for free flow of the electrorheological fluid through the plurality of dot actuator chambers when they are not activated. The device is adaptable to printed circuit techniques and can simultaneously display tactile dots representative of a full page of Braille characters stored on a medium such as a tape cassette or to display tactile dots representative of non-Braille data appearing on a computer monitor or contained on another data storage medium. In an alternate embodiment, the elastic diaphragm drives a plurality of spring-loaded pins provided with positive stops to maintain consistent displacements of the pins in both their actuated and nonactuated positions
The BMDO Thruster-on-a-Pallet Program
The Ballistic Missile Defense Organization sponsors an aggressive program to develop and demonstrate electric propulsion and space power technologies for future missions. This program supports a focused effort to design, fabricate, and space qualify a Russian Hall thruster system-on-a-pallet ready to take advantage of a near-term flight opportunity. The Russian Hall Effect Thruster Technology (RHETT) program will demonstrate an integrated pallet design in late FY95. The program also includes a parallel effort to develop advanced Solar Concentrator Arrays with Refractive Linear Element Technology (SCARLET). This synergistic technology will be demonstrated in a flight experiment this summer on the Comet satellite. This paper provides an overview of the RHETT and SCARLET programs with an emphasis on electric propulsion, recent progress, and near-term program plans
Selection for Heterozygosity Gives Hope to a Wild Population of Inbred Wolves
Recent analyses have questioned the usefulness of heterozygosity estimates as measures of the inbreeding coefficient (f), a finding that may have dramatic consequences for the management of endangered populations. We confirm that f and heterozygosity is poorly correlated in a wild and highly inbred wolf population. Yet, our data show that for each level of f, it was the most heterozygous wolves that established themselves as breeders, a selection process that seems to have decelerated the loss of heterozygosity in the population despite a steady increase of f. The markers contributing to the positive relationship between heterozygosity and breeding success were found to be located on different chromosomes, but there was a substantial amount of linkage disequilibrium in the population, indicating that the markers are reflecting heterozygosity over relatively wide genomic regions. Following our results we recommend that management programs of endangered populations include estimates of both f and heterozygosity, as they may contribute with complementary information about population viability
Whiteness and diasporic Irishness: nation, gender and class
Whiteness is often detached from the notion of diaspora in the recent flurry of interest in the phenomenon, yet it is a key feature of some of the largest and oldest displacements. This paper explores the specific contexts of white racial belonging and status over two centuries in two main destinations of the Irish diaspora, the USA and Britain. Its major contribution is a tracing of the untold story of âHow the Irish became white in Britainâ to parallel and contrast with the much more fully developed narrative in the USA. It argues that, contrary to popular belief, the racialisation of the Irish in England did not fade away at the end of the nineteenth century but became transmuted in new forms which have continued to place the âwhiteâ Irish outside the boundaries of the English nation. These have been strangely ignored by social scientists, who conflate Irishness and working-class identities in England without acknowledging the distinctive contribution of Irish backgrounds to constructions of class difference. Gender locates Irish women and men differently in relation to these class positions, for example allowing mothers to be blamed for the perpetuation of the underclass. Class and gender are also largely unrecognised dimensions of Irish ethnicity in the USA, where the presence of âpoor whiteâ neighbourhoods continues to challenge the iconic story of Irish upward mobility. Irishness thus remains central to the construction of mainstream âwhiteâ identities in both the USA and Britain into the twenty-first century
Recommended from our members
Inhaled ambient-level traffic-derived particulates decrease cardiac vagal influence and baroreflexes and increase arrhythmia in a rat model of metabolic syndrome
Background: Epidemiological studies have linked exposures to ambient fine particulate matter (PM2.5) and traffic with autonomic nervous system imbalance (ANS) and cardiac pathophysiology, especially in individuals with preexisting disease. It is unclear whether metabolic syndrome (MetS) increases susceptibility to the effects of PM2.5. We hypothesized that exposure to traffic-derived primary and secondary organic aerosols (P + SOA) at ambient levels would cause autonomic and cardiovascular dysfunction in rats exhibiting features of MetS. Male Sprague Dawley (SD) rats were fed a high-fructose diet (HFrD) to induce MetS, and exposed to P + SOA (20.4 ± 0.9 Όg/m3) for 12 days with time-matched comparison to filtered-air (FA) exposed MetS rats; normal diet (ND) SD rats were separately exposed to FA or P + SOA (56.3 ± 1.2 Όg/m3). Results: In MetS rats, P + SOA exposure decreased HRV, QTc, PR, and expiratory time overall (mean effect across the entirety of exposure), increased breathing rate overall, decreased baroreflex sensitivity (BRS) on three exposure days, and increased spontaneous atrioventricular (AV) block Mobitz Type II arrhythmia on exposure day 4 relative to FA-exposed animals receiving the same diet. Among ND rats, P + SOA decreased HRV only on day 1 and did not significantly alter BRS despite overall hypertensive responses relative to FA. Correlations between HRV, ECG, BRS, and breathing parameters suggested a role for autonomic imbalance in the pathophysiologic effects of P + SOA among MetS rats. Autonomic cardiovascular responses to P + SOA at ambient PM2.5 levels were pronounced among MetS rats and indicated blunted vagal influence over cardiovascular physiology. Conclusions: Results support epidemiologic findings that MetS increases susceptibility to the adverse cardiac effects of ambient-level PM2.5, potentially through ANS imbalance. Electronic supplementary material The online version of this article (doi:10.1186/s12989-017-0196-2) contains supplementary material, which is available to authorized users
Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1)
<p>Abstract</p> <p>Background</p> <p>There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a animal model for humans in influenza pathogenicity and transmissibility studies. In this manuscript, a nose-only bioaerosol inhalation exposure system that was recently developed and validated was used in an inhalation exposure study of aerosolized A/Vietnam/1203/2004 (H5N1) virus in ferrets. The clinical spectrum of influenza resulting from exposure to A/Vietnam/1203/2004 (H5N1) through intranasal verses inhalation routes was analyzed.</p> <p>Results</p> <p>Ferrets were successfully infected through intranasal instillation or through inhalation of small particle aerosols with four different doses of <it>Influenza virus </it>A/Vietnam/1203/2004 (H5N1). The animals developed severe influenza encephalomyelitis following intranasal or inhalation exposure to 10<sup>1</sup>, 10<sup>2</sup>, 10<sup>3</sup>, or 10<sup>4 </sup>infectious virus particles per ferret.</p> <p>Conclusions</p> <p>Aerosolized <it>Influenza virus </it>A/Vietnam/1203/2004 (H5N1) is highly infectious and lethal in ferrets. Clinical signs appeared earlier in animals infected through inhalation of aerosolized virus compared to those infected through intranasal instillation.</p
A Survey of New Temperature-Sensitive, Embryonic-Lethal Mutations in C. elegans: 24 Alleles of Thirteen Genes
To study essential maternal gene requirements in the early C. elegans embryo, we have screened for temperature-sensitive, embryonic lethal mutations in an effort to bypass essential zygotic requirements for such genes during larval and adult germline development. With conditional alleles, multiple essential requirements can be examined by shifting at different times from the permissive temperature of 15°C to the restrictive temperature of 26°C. Here we describe 24 conditional mutations that affect 13 different loci and report the identity of the gene mutations responsible for the conditional lethality in 22 of the mutants. All but four are mis-sense mutations, with two mutations affecting splice sites, another creating an in-frame deletion, and one creating a premature stop codon. Almost all of the mis-sense mutations affect residues conserved in orthologs, and thus may be useful for engineering conditional mutations in other organisms. We find that 62% of the mutants display additional phenotypes when shifted to the restrictive temperature as L1 larvae, in addition to causing embryonic lethality after L4 upshifts. Remarkably, we also found that 13 out of the 24 mutations appear to be fast-acting, making them particularly useful for careful dissection of multiple essential requirements. Our findings highlight the value of C. elegans for identifying useful temperature-sensitive mutations in essential genes, and provide new insights into the requirements for some of the affected loci
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2â4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genesâincluding reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)âin critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
- âŠ