257 research outputs found
Direct mass measurements beyond the proton drip-line
First on-line mass measurements were performed at the SHIPTRAP Penning trap
mass spectrometer. The masses of 18 neutron-deficient isotopes in the
terbium-to-thulium region produced in fusion-evaporation reactions were
determined with relative uncertainties of about , nine of them
for the first time. Four nuclides (Ho and Tm) were
found to be proton-unbound. The implication of the results on the location of
the proton drip-line is discussed by analyzing the one-proton separation
energies
The Human Posterior Superior Temporal Sulcus Samples Visual Space Differently From Other Face-Selective Regions
Neuroimaging studies show that ventral face-selective regions, including the fusiform face area (FFA) and occipital face area (OFA), preferentially respond to faces presented in the contralateral visual field (VF). In the current study we measured the VF response of the face-selective posterior superior temporal sulcus (pSTS). Across 3 functional magnetic resonance imaging experiments, participants viewed face videos presented in different parts of the VF. Consistent with prior results, we observed a contralateral VF bias in bilateral FFA, right OFA (rOFA), and bilateral human motion-selective area MT+. Intriguingly, this contralateral VF bias was absent in the bilateral pSTS. We then delivered transcranial magnetic stimulation (TMS) over right pSTS (rpSTS) and rOFA, while participants matched facial expressions in both hemifields. TMS delivered over the rpSTS disrupted performance in both hemifields, but TMS delivered over the rOFA disrupted performance in the contralateral hemifield only. These converging results demonstrate that the contralateral bias for faces observed in ventral face-selective areas is absent in the pSTS. This difference in VF response is consistent with face processing models proposing 2 functionally distinct pathways. It further suggests that these models should account for differences in interhemispheric connections between the face-selective areas across these 2 pathways
The Superior Temporal Sulcus Is Causally Connected to the Amygdala : A Combined TBS-fMRI Study.
Nonhuman primate neuroanatomical studies have identified a cortical pathway from the superior temporal sulcus (STS) projecting into dorsal subregions of the amygdala, but whether this same pathway exists in humans is unknown. Here, we addressed this question by combining theta burst transcranial magnetic stimulation (TBS) with fMRI to test the prediction that the STS and amygdala are functionally connected during face perception. Human participants (N = 17) were scanned, over two sessions, while viewing 3 s video clips of moving faces, bodies, and objects. During these sessions, TBS was delivered over the face-selective right posterior STS (rpSTS) or over the vertex control site. A region-of-interest analysis revealed results consistent with our hypothesis. Namely, TBS delivered over the rpSTS reduced the neural response to faces (but not to bodies or objects) in the rpSTS, right anterior STS (raSTS), and right amygdala, compared with TBS delivered over the vertex. By contrast, TBS delivered over the rpSTS did not significantly reduce the neural response to faces in the right fusiform face area or right occipital face area. This pattern of results is consistent with the existence of a cortico-amygdala pathway in humans for processing face information projecting from the rpSTS, via the raSTS, into the amygdala. This conclusion is consistent with nonhuman primate neuroanatomy and with existing face perception models
Position-sensitive ion detection in precision Penning trap mass spectrometry
A commercial, position-sensitive ion detector was used for the first time for
the time-of-flight ion-cyclotron resonance detection technique in Penning trap
mass spectrometry. In this work, the characteristics of the detector and its
implementation in a Penning trap mass spectrometer will be presented. In
addition, simulations and experimental studies concerning the observation of
ions ejected from a Penning trap are described. This will allow for a precise
monitoring of the state of ion motion in the trap.Comment: 20 pages, 13 figure
Plasma Fetuin-A Levels and the Risk of Type 2 Diabetes
OBJECTIVEâThe liver-secreted protein fetuin-A induces insulin resistance in animals, and circulating fetuin-A is elevated in insulin resistance and fatty liver in humans. We investigated whether plasma fetuin-A levels predict the incidence of type 2 diabetes in a large prospective, population-based study
Detection of variable VHE gamma-ray emission from the extra-galactic gamma-ray binary LMC P3
Context. Recently, the high-energy (HE, 0.1-100 GeV) -ray emission
from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered
to be modulated with a 10.3-day period, making it the first extra-galactic
-ray binary.
Aims. This work aims at the detection of very-high-energy (VHE, >100 GeV)
-ray emission and the search for modulation of the VHE signal with the
orbital period of the binary system.
Methods. LMC P3 has been observed with the High Energy Stereoscopic System
(H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has
been folded with the known orbital period of the system in order to test for
variability of the emission. Energy spectra are obtained for the orbit-averaged
data set, and for the orbital phase bin around the VHE maximum.
Results. VHE -ray emission is detected with a statistical
significance of 6.4 . The data clearly show variability which is
phase-locked to the orbital period of the system. Periodicity cannot be deduced
from the H.E.S.S. data set alone. The orbit-averaged luminosity in the
TeV energy range is erg/s. A luminosity of erg/s is reached during 20% of the orbit. HE and VHE
-ray emissions are anti-correlated. LMC P3 is the most luminous
-ray binary known so far.Comment: 5 pages, 3 figures, 1 table, accepted for publication in A&
Mass measurements in the vicinity of the rp-process and the nu p-process paths with JYFLTRAP and SHIPTRAP
The masses of very neutron-deficient nuclides close to the astrophysical rp-
and nu p-process paths have been determined with the Penning trap facilities
JYFLTRAP at JYFL/Jyv\"askyl\"a and SHIPTRAP at GSI/Darmstadt. Isotopes from
yttrium (Z = 39) to palladium (Z = 46) have been produced in heavy-ion
fusion-evaporation reactions. In total 21 nuclides were studied and almost half
of the mass values were experimentally determined for the first time: 88Tc,
90-92Ru, 92-94Rh, and 94,95Pd. For the 95Pdm, (21/2^+) high-spin state, a first
direct mass determination was performed. Relative mass uncertainties of
typically were obtained. The impact of the
new mass values has been studied in nu p-process nucleosynthesis calculations.
The resulting reaction flow and the final abundances are compared to those
obtained with the data of the Atomic Mass Evaluation 2003.Comment: 21 pages, 12 figures, 2 tables, submitted to Phys. Rev.
- âŠ