64 research outputs found

    Laser cooling and sympathetic cooling in a linear quadrupole rf trap

    Get PDF
    An investigation of the sympathetic cooling method for the studies of large ultra-cold molecular ions in a quadrupole ion trap has been conducted.Molecular dynamics simulations are performed to study the rf heating mechanisms in the ion trap. The dependence of rf heating rates on the ion temperature, trapping parameters, and the number of ions is obtained. New rf heating mechanism affecting ultra-cold ion clouds exposed to laser radiation is described.The saturation spectroscopy setup of the hyperfine spectra of the molecular iodine has been built to provide an accurate frequency reference for the laser wavelength. This reference is used to obtain the fluorescence lineshapes of the laser cooled Mg+^+ ions under different trapping conditions.The ion temperatures are deduced from the measurements, and the influence of the rf heating rates on the fluorescence lineshapes is also discussed. Cooling of the heavy (m=720m=720a.u.) fullerene ions to under 10K by the means of the sympathetic cooling by the Mg+^+ ions(m=24m=24a.u.) is demonstrated. The single-photon imaging system has been developed and used to obtain the images of the Mg+^+ ion crystal structures at mK temperatures

    First Penning-trap mass measurement in the millisecond half-life range: the exotic halo nucleus 11Li

    Full text link
    In this letter, we report a new mass for 11^{11}Li using the trapping experiment TITAN at TRIUMF's ISAC facility. This is by far the shortest-lived nuclide, t1/2=8.8mst_{1/2} = 8.8 \rm{ms}, for which a mass measurement has ever been performed with a Penning trap. Combined with our mass measurements of 8,9^{8,9}Li we derive a new two-neutron separation energy of 369.15(65) keV: a factor of seven more precise than the best previous value. This new value is a critical ingredient for the determination of the halo charge radius from isotope-shift measurements. We also report results from state-of-the-art atomic-physics calculations using the new mass and extract a new charge radius for 11^{11}Li. This result is a remarkable confluence of nuclear and atomic physics.Comment: Formatted for submission to PR

    Parametric excitations of trapped ions in a linear rf ion rap

    Get PDF

    First direct mass-measurement of the two-neutron halo nucleus 6He and improved mass for the four-neutron halo 8He

    Full text link
    The first direct mass-measurement of 6^{6}He has been performed with the TITAN Penning trap mass spectrometer at the ISAC facility. In addition, the mass of 8^{8}He was determined with improved precision over our previous measurement. The obtained masses are mm(6^{6}He) = 6.018 885 883(57) u and mm(8^{8}He) = 8.033 934 44(11) u. The 6^{6}He value shows a deviation from the literature of 4σ\sigma. With these new mass values and the previously measured atomic isotope shifts we obtain charge radii of 2.060(8) fm and 1.959(16) fm for 6^{6}He and 8^{8}He respectively. We present a detailed comparison to nuclear theory for 6^6He, including new hyperspherical harmonics results. A correlation plot of the point-proton radius with the two-neutron separation energy demonstrates clearly the importance of three-nucleon forces.Comment: 4 pages, 2 figure

    Arctic atmospheric mercury:Sources and changes

    Get PDF
    Global anthropogenic and legacy mercury (Hg) emissions are the main sources of Arctic Hg contamination, primarily transported there via the atmosphere. This review summarizes the state of knowledge of the global anthropogenic sources of Hg emissions, and examines recent changes and source attribution of Hg transport and deposition to the Arctic using models. Estimated global anthropogenic Hg emissions to the atmosphere for 2015 were ~2220 Mg, ~20% higher than 2010. Global anthropogenic, legacy and geogenic Hg emissions were, respectively, responsible for 32%, 64% (wildfires: 6–10%) and 4% of the annual Arctic Hg deposition. Relative contributions to Arctic deposition of anthropogenic origin was dominated by sources in East Asia (32%), Commonwealth of Independent States (12%), and Africa (12%). Model results exhibit significant spatiotemporal variations in Arctic anthropogenic Hg deposition fluxes, driven by regional differences in Hg air transport routes, surface and precipitation uptake rates, and inter-seasonal differences in atmospheric circulation and deposition pathways. Model simulations reveal that changes in meteorology are having a profound impact on contemporary atmospheric Hg in the Arctic. Reversal of North Atlantic Oscillation phase from strongly negative in 2010 to positive in 2015, associated with lower temperature and more sea ice in the Canadian Arctic, Greenland and surrounding ocean, resulted in enhanced production of bromine species and Hg(0) oxidation and lower evasion of Hg(0) from ocean waters in 2015. This led to increased Hg(II) (and its deposition) and reduced Hg(0) air concentrations in these regions in line with High Arctic observations. However, combined changes in meteorology and anthropogenic emissions led to overall elevated modeled Arctic air Hg(0) levels in 2015 compared to 2010 contrary to observed declines at most monitoring sites, likely due to uncertainties in anthropogenic emission speciation, wildfire emissions and model representations of air-surface Hg fluxes

    Structural phase transitions in multipole traps

    Full text link
    A small number of laser-cooled ions trapped in a linear radiofrequency multipole trap forms a hollow tube structure. We have studied, by means of molecular dynamics simulations, the structural transition from a double ring to a single ring of ions. We show that the single-ring configuration has the advantage to inhibit the thermal transfer from the rf-excited radial components of the motion to the axial component, allowing to reach the Doppler limit temperature along the direction of the trap axis. Once cooled in this particular configuration, the ions experience an angular dependency of the confinement if the local adiabaticity parameter exceeds the empirical limit. Bunching of the ion structures can then be observed and an analytic expression is proposed to take into account for this behaviour

    Position-sensitive ion detection in precision Penning trap mass spectrometry

    Get PDF
    A commercial, position-sensitive ion detector was used for the first time for the time-of-flight ion-cyclotron resonance detection technique in Penning trap mass spectrometry. In this work, the characteristics of the detector and its implementation in a Penning trap mass spectrometer will be presented. In addition, simulations and experimental studies concerning the observation of ions ejected from a Penning trap are described. This will allow for a precise monitoring of the state of ion motion in the trap.Comment: 20 pages, 13 figure

    TITAN's Digital RFQ Ion Beam Cooler and Buncher, Operation and Performance

    Full text link
    We present a description of the Radio Frequency Quadrupole (RFQ) ion trap built as part of the TITAN facility. It consists of a gas-filled, segmented, linear Paul trap and is the first stage of the TITAN setup with the purpose of cooling and bunching radioactive ion beams delivered from ISAC-TRIUMF. This is the first such device to be driven digitally, i.e., using a high voltage (Vpp=400VV_{pp} = \rm{400 \, V}), wide bandwidth (0.2<f<1.2MHz0.2 < f < 1.2 \, \rm{MHz}) square-wave as compared to the typical sinusoidal wave form. Results from the commissioning of the device as well as systematic studies with stable and radioactive ions are presented including efficiency measurements with stable 133^{133}Cs and radioactive 124,126^{124, 126}Cs. A novel and unique mode of operation of this device is also demonstrated where the cooled ion bunches are extracted in reverse mode, i.e., in the same direction as previously injected.Comment: 34 pages, 17 figure

    Electron and lattice structure of ultra thin Ag films on Si(111) and Si(001)

    Full text link
    We studied the low temperature (T<130K) growth of Ag on Si(001) and Si(111) flat surfaces prepared by Si homo epitaxy with the aim to achieve thin metallic films. The band structure and morphology of the Ag overlayers have been investigated by means of XPS, UPS, LEED, STM and STS. Surprisingly a (root3xroot3)R30^o LEED structure for Ag films has been observed after deposition of 2-6 ML Ag onto a Si(111)(root3xroot3)R30^o Ag surface at low temperatures. XPS investigations showed that these films are solid, and UPS measurements indicate that they are metallic. However, after closer STM studies we found that these films consists of sharp Ag islands and (root3xroot3)R30^o Ag flat terraces in between. On Si(001) the low-temperature deposition yields an epitaxial growth of Ag on clean Si(001)2x1 with a twinned Ag(111) structure at coverages as low as 10 ML. Furthermore the conductivity of few monolayer Ag films on Si(100) surfaces has been studied as a function of temperature (40-300 K).Comment: 12 pages, 9 figure
    corecore