388 research outputs found

    The Stellar Initial Mass Function in the Galactic Center

    Full text link
    Massive stars define the upper limits of the star formation process, dominate the energetics of their local environs, and significantly affect the chemical evolution of galaxies. Their role in starburst galaxies and the early Universe is likely to be important, but we still do not know the maximum mass that a star can possess, i.e.``the upper mass cutoff.'' I will discuss results from a program to measure the upper mass cutoff and IMF slope in the Galactic Center. The results suggest that the IMF in the Galactic center may deviate significantly from the Salpeter value, and that there may be an upper mass cutoff to the initial mass function of \sim150 Msun.Comment: To be published in the IMF@50 conference proceeding

    A third red supergiant rich cluster in the Scutum-Crux arm

    Get PDF
    Aims. We aim to characterise the properties of a third massive, red supergiant dominated galactic cluster. Methods. To accomplish this we utilised a combination of near/mid-IR photometry and spectroscopy to identify and classify the properties of cluster members, and statistical arguments to determine the mass of the cluster. Results. We found a total of 16 strong candidates for cluster membership, for which formal classification of a subset yields spectral types from K3-M4 Ia and luminosities between log(L/L-circle dot) similar to 4.5-4.8 for an adopted distance of 6 +/- 1 kpc. For an age in the range of 16-20 Myr, the implied mass is 2-4 x 10(4) M-circle dot, making it one of the most massive young clusters in the Galaxy. This discovery supports the hypothesis that a significant burst of star formation occurred at the base of Scutum-Crux arm between 10-20 Myr ago, yielding a stellar complex comprising at least similar to 10(5) M-circle dot of stars (noting that since the cluster identification criteria rely on the presence of RSGs, we suspect that the true stellar yield will be significantly higher). We highlight the apparent absence of X-ray binaries within the star formation complex and finally, given the physical association of at least two pulsars with this region, discuss the implications of this finding for stellar evolution and the production and properties of neutron stars

    Mid-infrared imaging and spectroscopy of the enigmatic cocoon stars in the Quintuplet Cluster

    Get PDF
    In an attempt to determine the nature of the enigmatic cocoon stars in the Quintuplet Cluster, we have obtained mid-infrared imaging and spectrophotometry of the cluster, using the CAM and SWS instruments on ISO, using SpectroCam-10 on the Palomar 5m telescope, and NICMOS on HST. The spectra show smooth continua with various dust and ice absorption features. These features are all consistent with an interstellar origin, and there is no clear evidence for any circumstellar contribution to these features. We find no spectral line or feature that could elucidate the nature of these sources. Detailed modeling of the silicate absorption features shows that they are best reproduced by the mu Cep profile, which is typical of the interstellar medium, with tau(sil) \sim 2.9. The high spatial resolution mid-IR images show that three of the five cocoon stars have spatially extended and asymmetric envelopes, with diameters of \sim 20,000 AUs. A reddening law similar to that of Lutz (1999) but with silicate features based on the mu Cep profile and normalized to our value of tau(sil) is used to deredden the observed spectrophotometry. The dereddened energy distributions are characterised by temperatures of 750-925 K, somewhat cooler than determined from near IR data alone. Models of optically thin and geometrically thick dust shells, as used by Williams et al. (1987) for very dusty, late-type WC stars, reproduce the observed SEDs from 4 to 17 mic, and imply shell luminosities of log(L/L(sun)) \sim 4.5-4.9 for the brightest four components. An analysis of the various suggestions proposed to explain the nature of the cocoon stars reveals serious problems with all the hypotheses, and the nature of these sources remains an enigma.Comment: 16 pages, 11 figures, A&A style. Accepted by A&

    Isolated Wolf-Rayet Stars and O Supergiants in the Galactic Center Region Identified via Paschen-alpha Excess

    Get PDF
    We report the discovery of 19 hot, evolved, massive stars near the Galactic center region (GCR). These objects were selected for spectroscopy owing to their detection as strong sources of Paschen-alpha emission-line excess, following a narrowband imaging survey of the central 0.65 x 0.25 degress (l, b) around Sgr A* with the Hubble Space Telescope. Discoveries include 5 carbon-type (WC) and 6 nitrogen-type (WN) Wolf-Rayet stars, 6 O supergiants, and 2 B supergiants. Two of the O supergiants have X-ray counterparts, the properties of which are broadly consistent with colliding-wind binaries and solitary O stars. The infrared photometry of 17 stars is consistent with the Galactic center distance, but 2 of them are located in the foreground. Several WC stars exhibit a relatively large infrared excesses, which is possibly the signature of thermal emission from hot dust. Most of the stars appear scattered throughout the GCR, with no relation to the three known massive young clusters; several others lie near the Arches and Quintuplet clusters and may have originated within one of these systems. The results of this work bring the total sample of Wolf-Rayet stars in the GCR to 92. All sources of strong P-alpha excess have been identified in the area surveyed with HST, which implies that the sample of WN stars in this region is near completion, and is dominated by late (WNL) types. The current WC sample, although probably not complete, is almost exclusively dominated by late (WCL) types. The observed Wolf-Rayet subtype distribution in the GCR is a reflection of the intrinsic rarity of early subtypes (WNE and WCE) in the inner Galaxy, an effect that is driven by metallicity.Comment: Correction to Fig 4,5,6,10, and Tables 3, 5. The spectrum of the previously known WC9 star WR101q had been mistakenly labeled as Star #19 in Fig. 5 of the original manuscript. Star #19 is actually a newly discovered WN5b star, whose spectrum was accidentally not included in the original paper. The correct WN5b spectrum is now included in Fig. 4. An erratum was submitted to ApJ on Aug 15, 201

    Discovery of new Milky Way star cluster candidates in the 2MASS point source catalog III. Follow-up observations of cluster candidates in the Galactic Center region

    Full text link
    This paper is part of a project to search the inner Milky Way for hidden massive clusters and to address the question of whether our Galaxy still forms clusters similar to the progenitors of the present-day globular clusters. We report high angular resolution deep near-infrared imaging of 21 cluster candidates selected from the catalogues of Bica et al. (2003) and Dutra et al.(2003) in a region around the Galactic Center. These catalogues were created from visual inspection of the 2MASS images. Seven objects appear to be genuine clusters, and for these objects we present estimates of extinction, distance and in some cases age and mass. Our estimated masses range from 1200 to 5500 solar masses. These clusters are thus significantly smaller than any Galactic globular cluster, and indicate that the formation of massive young clusters such as Arches and Quintuplet is not common in the present-day Milky Way. The remaining 14 objects are either not clusters or cannot be classified based on our data.Comment: 8 pages, 19 figures, accepted for publication in A&

    The stellar population of the star forming region G61.48+0.09

    Full text link
    - Context: We present the results of a near-infrared photometric and spectroscopic study of the star forming region G61.48+0.09. - Aims: The purpose of this study is to characterize the stellar content of the cluster and to determine its distance, extinction, age and mass. - Methods: The stellar population was studied by using color-magnitude diagrams to select twenty promising cluster members, for which follow up spectroscopy was done. The observed spectra allowed a spectral classification of the stars. - Results: Two stars have emission lines, twelve are G-type stars, and six are late-O or early-B stars. - Conclusions: The cluster's extinction varies from A_{K_S} = 0.9 to A_{K_S} = 2.6, (or A_{V}~8 to A_{V}~23). G61.48+0.09 is a star forming region located at 2.5+/-0.4 Kpc. The cluster is younger than 10 Myr and has a minimum stellar mass of 1500+/-500 Solar masses. However, the actual total mass of the cluster remains undetermined, as we cannot see its whole stellar content.Comment: 20 pages, 10 figures. Accepted for publication in A&

    Detection of additional Wolf-Rayet stars in the starburst cluster Westerlund 1 with SOAR

    Get PDF
    We report the detection of 3 additional Wolf-Rayet stars in the young cluster Westerlund 1. They were selected as emission-line star candidates based on 1 micron narrow-band imaging of the cluster carried out at OPD/LNA (Brazil), and then confirmed as Wolf-Rayet stars by K-band spectroscopy performed at the 4.1 m SOAR telescope (Chile). Together with previous works, this increases the population of Wolf-Rayet stars detected in the cluster to 22 members. Moreover, it is presented for the first time a K-band spectrum of the luminous blue variable W243, which apparently implies in a higher temperature than that derived from optical spectra taken in 2003. The WC9 star WR-F was also observed, showing clear evidence of dust emission in the K-band.Comment: 5 pages, 4 figures, submitted to A&

    New Galactic Wolf-Rayet stars, and candidates. An annex to The VIIth Catalogue of Galactic Wolf-Rayet Stars

    Get PDF
    This paper gathers, from the literature and private communication, 72 new Galactic Population I Wolf-Rayet stars and 17 candidate WCLd stars, recognized and/or discovered after the publication of The VIIth Catalogue of Galactic Wolf-Rayet Stars. This brings the total number of known Galactic Wolf-Rayet stars to 298, of which 24 (8%) are in open cluster Westerlund 1, and 60 (20%) are in open clusters near the Galactic Center.Comment: 10 pages. A&A Research Note, accepte

    Contamination of short GRBs by giant magnetar flares: significance of downwards revision in distance to SGR 1806-20

    Get PDF
    We highlight how the downward revision in the distance to the star cluster associated with SGR1806-20 by Bibby et al. reconciles the apparent low contamination of BATSE short GRBs by intense flares from extragalactic magnetars without recourse to modifying the frequency of one such flare per 30 years per Milky Way galaxy. We also discuss the variety in progenitor initial masses of magnetars based upon cluster ages, ranging from ~50 Msun for SGR 1806-20 and 1E 1647-455 in Westerlund 1 to ~15 Msun for SGR 1900+14 and presumably 1E 1841-045 if it originated from one of the massive RSG clusters #2 or #3
    corecore