In an attempt to determine the nature of the enigmatic cocoon stars in the
Quintuplet Cluster, we have obtained mid-infrared imaging and spectrophotometry
of the cluster, using the CAM and SWS instruments on ISO, using SpectroCam-10
on the Palomar 5m telescope, and NICMOS on HST. The spectra show smooth
continua with various dust and ice absorption features. These features are all
consistent with an interstellar origin, and there is no clear evidence for any
circumstellar contribution to these features. We find no spectral line or
feature that could elucidate the nature of these sources. Detailed modeling of
the silicate absorption features shows that they are best reproduced by the mu
Cep profile, which is typical of the interstellar medium, with tau(sil) \sim
2.9. The high spatial resolution mid-IR images show that three of the five
cocoon stars have spatially extended and asymmetric envelopes, with diameters
of \sim 20,000 AUs.
A reddening law similar to that of Lutz (1999) but with silicate features
based on the mu Cep profile and normalized to our value of tau(sil) is used to
deredden the observed spectrophotometry. The dereddened energy distributions
are characterised by temperatures of 750-925 K, somewhat cooler than determined
from near IR data alone. Models of optically thin and geometrically thick dust
shells, as used by Williams et al. (1987) for very dusty, late-type WC stars,
reproduce the observed SEDs from 4 to 17 mic, and imply shell luminosities of
log(L/L(sun)) \sim 4.5-4.9 for the brightest four components. An analysis of
the various suggestions proposed to explain the nature of the cocoon stars
reveals serious problems with all the hypotheses, and the nature of these
sources remains an enigma.Comment: 16 pages, 11 figures, A&A style. Accepted by A&