337 research outputs found

    Towards a new online species-information system for legumes

    Get PDF
    The need for scientists to exchange, share and organise data has resulted in a proliferation of biodiversity research-data portals over recent decades. These cyber-infrastructures have had a major impact on taxonomy and helped the discipline by allowing faster access to bibliographic information, biological and nomenclatural data, and specimen information. Several specialised portals aggregate particular data types for a large number of species, including legumes. Here, we argue that, despite access to such data-aggregation portals, a taxon-focused portal, curated by a community of researchers specialising on a particular taxonomic group and who have the interest, commitment, existing collaborative links, and knowledge necessary to ensure data quality, would be a useful resource in itself and make important contributions to more general data providers. Such an online species-information system focused on Leguminosae (Fabaceae) would serve useful functions in parallel to and different from international data-aggregation portals. We explore best practices for developing a legume-focused portal that would support data sharing, provide a better understanding of what data are available, missing, or erroneous, and, ultimately, facilitate cross-analyses and direct development of novel research. We present a history of legume-focused portals, survey existing data portals to evaluate what is available and which features are of most interest, and discuss how a legume-focused portal might be developed to respond to the needs of the legume-systematics research community and beyond. We propose taking full advantage of existing data sources, informatics tools and protocols to develop a scalable and interactive portal that will be used, contributed to, and fully supported by the legume-systematics community in the easiest manner possible

    The Hydrogen Epoch of Reionization Array Dish I: Beam Pattern Measurements and Science Implications

    Full text link
    The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the Epoch of Reionization (EOR). Drawing on lessons from the Murchison Widefield Array (MWA) and the Precision Array for Probing the Epoch of Reionization (PAPER), HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. Not only does the dish determine overall sensitivity, it affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish with simulations and measurements. We focus in this paper on the angular response (i.e., power pattern), which sets the relative weighting between sky regions of high and low delay, and thus, apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m^2 in the optimal dish/feed configuration, implying HERA-320 should detect the EOR power spectrum at z~9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations, and 74.3 using a foreground subtraction approach. Lastly we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.Comment: 13 pages, 9 figures. Replaced to match accepted ApJ versio

    Prospects for progress on health inequalities in England in the post-primary care trust era : professional views on challenges, risks and opportunities

    Get PDF
    Background - Addressing health inequalities remains a prominent policy objective of the current UK government, but current NHS reforms involve a significant shift in roles and responsibilities. Clinicians are now placed at the heart of healthcare commissioning through which significant inequalities in access, uptake and impact of healthcare services must be addressed. Questions arise as to whether these new arrangements will help or hinder progress on health inequalities. This paper explores the perspectives of experienced healthcare professionals working within the commissioning arena; many of whom are likely to remain key actors in this unfolding scenario. Methods - Semi-structured interviews were conducted with 42 professionals involved with health and social care commissioning at national and local levels. These included representatives from the Department of Health, Primary Care Trusts, Strategic Health Authorities, Local Authorities, and third sector organisations. Results - In general, respondents lamented the lack of progress on health inequalities during the PCT commissioning era, where strong policy had not resulted in measurable improvements. However, there was concern that GP-led commissioning will fare little better, particularly in a time of reduced spending. Specific concerns centred on: reduced commitment to a health inequalities agenda; inadequate skills and loss of expertise; and weakened partnership working and engagement. There were more mixed opinions as to whether GP commissioners would be better able than their predecessors to challenge large provider trusts and shift spend towards prevention and early intervention, and whether GPs’ clinical experience would support commissioning action on inequalities. Though largely pessimistic, respondents highlighted some opportunities, including the potential for greater accountability of healthcare commissioners to the public and more influential needs assessments via emergent Health & Wellbeing Boards. Conclusions - There is doubt about the ability of GP commissioners to take clearer action on health inequalities than PCTs have historically achieved. Key actors expect the contribution from commissioning to address health inequalities to become even more piecemeal in the new arrangements, as it will be dependent upon the interest and agency of particular individuals within the new commissioning groups to engage and influence a wider range of stakeholders.</p

    A Standards Organization for Open and FAIR Neuroscience: the International Neuroinformatics Coordinating Facility

    Get PDF
    There is great need for coordination around standards and best practices in neuroscience to support efforts to make neuroscience a data-centric discipline. Major brain initiatives launched around the world are poised to generate huge stores of neuroscience data. At the same time, neuroscience, like many domains in biomedicine, is confronting the issues of transparency, rigor, and reproducibility. Widely used, validated standards and best practices are key to addressing the challenges in both big and small data science, as they are essential for integrating diverse data and for developing a robust, effective, and sustainable infrastructure to support open and reproducible neuroscience. However, developing community standards and gaining their adoption is difficult. The current landscape is characterized both by a lack of robust, validated standards and a plethora of overlapping, underdeveloped, untested and underutilized standards and best practices. The International Neuroinformatics Coordinating Facility (INCF), an independent organization dedicated to promoting data sharing through the coordination of infrastructure and standards, has recently implemented a formal procedure for evaluating and endorsing community standards and best practices in support of the FAIR principles. By formally serving as a standards organization dedicated to open and FAIR neuroscience, INCF helps evaluate, promulgate, and coordinate standards and best practices across neuroscience. Here, we provide an overview of the process and discuss how neuroscience can benefit from having a dedicated standards body

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Safety and Feasibility of a Novel Sparse Optical Coherence Tomography Device for Patient-Delivered Retina Home Monitoring

    Get PDF
    Purpose To study a novel and fast optical coherence tomography (OCT) device for home-based monitoring in age-related macular degeneration (AMD) in a small sample yielding sparse OCT (spOCT) data and to compare the device to a commercially available reference device. Methods In this prospective study, both eyes of 31 participants with AMD were included. The subjects underwent scanning with an OCT prototype and a spectral-domain OCT to compare the accuracy of the central retinal thickness (CRT) measurements. Results Sixty-two eyes in 31 participants (21 females and 10 males) were included. The mean age was 79.6 years (age range, 69-92 years). The mean difference in the CRT measurements between the devices was 4.52 μm (SD ± 20.0 μm; range, -65.6 to 41.5 μm). The inter- and intrarater reliability coefficients of the OCT prototype were both >0.95. The laser power delivered was <0.54 mW for spOCT and <1.4 mW for SDOCT. No adverse events were reported, and the visual acuity before and after the measurements was stable. Conclusion This study demonstrated the safety and feasibility of this home-based OCT monitoring under real-life conditions, and it provided evidence for the potential clinical benefit of the device. Translational Relevance The newly developed spOCT is a valid and readily available retina scanner. It could be applied as a portable self-measuring OCT system. Its use may facilitate the sustainable monitoring of chronic retinal diseases by providing easily accessible and continuous retinal monitoring

    Science Forum: Consensus-based guidance for conducting and reporting multi-analyst studies

    Get PDF
    Any large dataset can be analyzed in a number of ways, and it is possible that the use of different analysis strategies will lead to different results and conclusions. One way to assess whether the results obtained depend on the analysis strategy chosen is to employ multiple analysts and leave each of them free to follow their own approach. Here, we present consensus-based guidance for conducting and reporting such multi-analyst studies, and we discuss how broader adoption of the multi-analyst approach has the potential to strengthen the robustness of results and conclusions obtained from analyses of datasets in basic and applied research

    Consensus-based guidance for conducting and reporting multi-analyst studies

    Get PDF
    International audienceAny large dataset can be analyzed in a number of ways, and it is possible that the use of different analysis strategies will lead to different results and conclusions. One way to assess whether the results obtained depend on the analysis strategy chosen is to employ multiple analysts and leave each of them free to follow their own approach. Here, we present consensus-based guidance for conducting and reporting such multi-analyst studies, and we discuss how broader adoption of the multi-analyst approach has the potential to strengthen the robustness of results and conclusions obtained from analyses of datasets in basic and applied research
    corecore