104 research outputs found

    METROPOLIS : a thematic network in support of precautionary sciences and sustainable development policies

    Get PDF
    International audienceThe METROPOLIS network was created in July 2002, under the 5th Framework Programme, to respond to the need for an overall, cross-sectoral assessment of the state of the art of measurements and monitoring systems in the environmental field in Europe. The objectives of Metropolis include: - gathering information and knowledge about the problems/shortcomings that we face today in environmental monitoring ; - identifying the fields where research and further work are needed in order to improve the quality and comparability of environmental data across Europe

    Workshop Report: River Basin-Specific Pollutants - Identification and Monitoring

    Get PDF
    Besides the set of Priority Substances laid down in Annex X of the Water Framework Directive 2000/60/EC (WFD), which are regulated and to be monitored at EU level, the EU Member States (MS) need to identify pollutants of regional or local importance (in particular substances listed in WFD, Annex VIII) and provide environmental quality standards (EQS), monitoring schemes, and regulatory measures for them. This means that MS need to decide which are the candidate substances for further investigation and which are the substances then to be declared as River Basin-Specific Pollutants (RBSP). This requires assessments of impacts as well as prioritisation efforts and strategic screening for substances possibly causing concern. While this is a matter of discretion for each of the MS of concern, there is as yet no harmonisation of the procedures involved. Therefore, JRC (European Commission, Joint Research Centre)and NORMAN (Network of Reference Laboratories for the Monitoring of Emerging Environmental Substances) organized a workshop in order to support MS. The objective of the workshop was to provide a common forum for MS and interested groups for presenting, discussing and streamlining approaches for a harmonised selection and monitoring of RBSP in the WFD context. Particular attention was given to emerging contaminants, as their prioritisation and monitoring are particularly challenging. The workshop aimed to produce clear recommendations on how to proceed.JRC.DDG.H.5-Rural, water and ecosystem resource

    Strengthen the European collaborative environmental research to meet European policy goals for achieving a sustainable, non-toxic environment

    Get PDF
    To meet the United Nations (UN) sustainable development goals and the European Union (EU) strategy for a non-toxic environment, water resources and ecosystems management require cost-efficient solutions for prevailing complex contamination and multiple stressor exposures. For the protection of water resources under global change conditions, specific research needs for prediction, monitoring, assessment and abatement of multiple stressors emerge with respect to maintaining human needs, biodiversity, and ecosystem services. Collaborative European research seems an ideal instrument to mobilize the required transdisciplinary scientific support and tackle the large-scale dimension and develop options required for implementation of European policies. Calls for research on minimizing society’s chemical footprints in the water–food–energy–security nexus are required. European research should be complemented with targeted national scientific funding to address specific transformation pathways and support the evaluation, demonstration and implementation of novel approaches on regional scales. The foreseeable pressure developments due to demographic, economic and climate changes require solution-oriented thinking, focusing on the assessment of sustainable abatement options and transformation pathways rather than on status evaluation. Stakeholder involvement is a key success factor in collaborative projects as it allows capturing added value, to address other levels of complexity, and find smarter solutions by synthesizing scientific evidence, integrating governance issues, and addressing transition pathways. This increases the chances of closing the value chain by implementing novel solutions. For the water quality topic, the interacting European collaborative projects SOLUTIONS, MARS and GLOBAQUA and the NORMAN network provide best practice examples for successful applied collaborative research including multi-stakeholder involvement. They provided innovative conceptual, modelling and instrumental options for future monitoring and management of chemical mixtures and multiple stressors in European water resources. Advancement of EU water framework directive-related policies has therefore become an option

    Making Waves:Collaboration in the time of SARS-CoV-2 - rapid development of an international co-operation and wastewater surveillance database to support public health decision-making

    Get PDF
    The presence of SARS-CoV-2 RNA in wastewater was first reported in March 2020. Over the subsequent months, the potential for wastewater surveillance to contribute to COVID-19 mitigation programmes has been the focus of intense national and international research activities, gaining the attention of policy makers and the public. As a new application of an established methodology, focused collaboration between public health practitioners and wastewater researchers is essential to developing a common understanding on how, when and where the outputs of this non-invasive community-level approach can deliver actionable outcomes for public health authorities. Within this context, the NORMAN SCORE “SARS-CoV-2 in sewage” database provides a platform for rapid, open access data sharing, validated by the uploading of 276 data sets from nine countries to-date. Through offering direct access to underpinning meta-data sets (and describing its use in data interpretation), the NORMAN SCORE database is a resource for the development of recommendations on minimum data requirements for wastewater pathogen surveillance. It is also a tool to engage public health practitioners in discussions on use of the approach, providing an opportunity to build mutual understanding of the demand and supply for data and facilitate the translation of this promising research application into public health practice.</p

    Making Waves : Collaboration in the time of SARS-CoV-2-rapid development of an international co-operation and wastewater surveillance database to support public health decision-making

    Get PDF
    The presence of SARS-CoV-2 RNA in wastewater was first reported in March 2020. Over the subsequent months, the potential for wastewater surveillance to contribute to COVID-19 mitigation programmes has been the focus of intense national and international research activities, gaining the attention of policy makers and the public. As a new application of an established methodology, focused collaboration between public health practitioners and wastewater researchers is essential to developing a common understanding on how, when and where the outputs of this non-invasive community-level approach can deliver actionable outcomes for public health authorities. Within this context, the NORMAN SCORE "SARS-CoV-2 in sewage" database provides a platform for rapid, open access data sharing, validated by the uploading of 276 data sets from nine countries to-date. Through offering direct access to underpinning meta-data sets (and describing its use in data interpretation), the NORMAN SCORE database is a resource for the development of recommendations on minimum data requirements for wastewater pathogen surveillance. It is also a tool to engage public health practitioners in discussions on use of the approach, providing an opportunity to build mutual understanding of the demand and supply for data and facilitate the translation of this promising research application into public health practice. (C) 2021 Elsevier Ltd. All rights reserved.Peer reviewe

    Berlin statement on legacy and emerging contaminants in polar regions

    Get PDF
    Polar regions should be given greater consideration with respect to the monitoring, risk assessment, and management of potentially harmful chemicals, consistent with requirements of the precautionary principle. Protecting the vulnerable polar environments requires (i) raising political and public awareness and (ii) restricting and preventing global emissions of harmful chemicals at their sources. The Berlin Statement is the outcome of an international workshop with representatives of the European Commission, the Arctic Council, the Antarctic Treaty Consultative Meeting, the Stockholm Convention on Persistent Organic Pollutants (POPs), environmental specimen banks, and data centers, as well as scientists from various international research institutions. The statement addresses urgent chemical pollution issues in the polar regions and provides recommendations for improving screening, monitoring, risk assessment, research cooperation, and open data sharing to provide environmental policy makers and chemicals management decision-makers with relevant and reliable contaminant data to better protect the polar environments. The consensus reached at the workshop can be summarized in just two words: “Act now!” Specifically, “Act now!” to reduce the presence and impact of anthropogenic chemical pollution in polar regions by. •Establishing participatory co-development frameworks in a permanent multi-disciplinary platform for Arctic-Antarctic collaborations and establishing exchanges between the Arctic Monitoring and Assessment Program (AMAP) of the Arctic Council and the Antarctic Monitoring and Assessment Program (AnMAP) of the Scientific Committee on Antarctic Research (SCAR) to increase the visibility and exchange of contaminant data and to support the development of harmonized monitoring programs. •Integrating environmental specimen banking, innovative screening approaches and archiving systems, to provide opportunities for improved assessment of contaminants to protect polar regions

    The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let’s cooperate! [Commentary]

    Get PDF
    The Partnership for Chemicals Risk Assessment (PARC) is currently under development as a joint research and innovation programme to strengthen the scientific basis for chemical risk assessment in the EU. The plan is to bring chemical risk assessors and managers together with scientists to accelerate method development and the production of necessary data and knowledge, and to facilitate the transition to next-generation evidence-based risk assessment, a non-toxic environment and the European Green Deal. The NORMAN Network is an independent, well-established and competent network of more than 80 organisations in the field of emerging substances and has enormous potential to contribute to the implementation of the PARC partnership. NORMAN stands ready to provide expert advice to PARC, drawing on its long experience in the development, harmonisation and testing of advanced tools in relation to chemicals of emerging concern and in support of a European Early Warning System to unravel the risks of contaminants of emerging concern (CECs) and close the gap between research and innovation and regulatory processes. In this commentary we highlight the tools developed by NORMAN that we consider most relevant to supporting the PARC initiative: (i) joint data space and cutting-edge research tools for risk assessment of contaminants of emerging concern; (ii) collaborative European framework to improve data quality and comparability; (iii) advanced data analysis tools for a European early warning system and (iv) support to national and European chemical risk assessment thanks to harnessing, combining and sharing evidence and expertise on CECs. By combining the extensive knowledge and experience of the NORMAN network with the financial and policy-related strengths of the PARC initiative, a large step towards the goal of a non-toxic environment can be taken

    The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry

    Get PDF
    Background: The NORMAN Association (https://www.norman-.network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-.network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide.Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https:// zenodo.org/communities/norman-.sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA's CompTox Chemicals Dashboard (https://comptox. epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101).Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the "one substance, one assessment" approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-.network.com/nds/SLE/)
    • …
    corecore