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Abstract 74 

The presence of SARS-CoV-2 RNA in wastewater was first reported in March 2020. Over the 75 

subsequent months, the potential for wastewater surveillance to contribute to COVID-19 76 

mitigation programmes has been the focus of intense national and international research 77 

activities, gaining the attention of policy makers and the public. As a new application of an 78 

established methodology, focused collaboration between public health practitioners and 79 

wastewater researchers is essential to developing a common understanding on how, when 80 

and where the outputs of this non-invasive community-level approach can deliver actionable 81 

outcomes for public health authorities. Within this context, the NORMAN SCORE “SARS-CoV-82 

2 in sewage” database provides a platform for rapid, open access data sharing, validated by 83 

the uploading of 276 data sets from nine countries to-date. Through offering direct access to 84 

underpinning meta-data sets (and describing its use in data interpretation), the NORMAN 85 

SCORE database is a resource for the development of recommendations on minimum data 86 

requirements for wastewater pathogen surveillance. It is also a tool to engage public health 87 



practitioners in discussions on use of the approach, providing an opportunity to build mutual 88 

understanding of the demand and supply for data and facilitate the translation of this promising 89 

research application into public health practice.  90 

 91 

 92 

1. Introduction 93 

Research continues apace into many aspects of the use of wastewater surveillance for the 94 

detection of SARS-CoV-2 and how data generated can be utilised within local public health 95 

decision-making. Also known as sewage or environmental surveillance, the approach has an 96 

established literature in terms of monitoring the occurrence and concentration of chemicals 97 

arriving at a wastewater treatment plant (WWTP) (Choi et al., 2018). Determined chemical 98 

concentrations, loads and population normalised loads of illicit (González-Mariño et al., 2020; 99 

Ort et al., 2014) and licit drugs including tobacco, caffeine and alcohol (Castiglioni et al., 2015; 100 

Gracia-Lor et al., 2017; Ryu et al., 2016, Thomaidis et al., 2016) are used to provide 101 

quantitative longitudinal data sets on the use at a catchment level. It is also possible to 102 

evaluate the rates of exposure to environmental or food contaminants using the same 103 

approach (Rousis et al., 2017; Lopardo et al., 2019). Furthermore, wastewater surveillance 104 

can be used to evidence changes overtime in relation to the implementation of new policy 105 

initiatives. The practical utility of chemical wastewater surveillance data sets is demonstrated 106 

by its use within local and national monitoring and public health programmes (EMCDDA, 2020; 107 

Riva et al. 2020; Lai et al., 2018). Prior to 2020, the use of wastewater surveillance for 108 

monitoring pathogens was gaining ground only slowly. Most notably, enterovirus wastewater 109 

surveillance systems have been established in several locations (Sedmak et al., 2003; 110 

Majumdar et al., 2018), with wastewater surveillance identified as playing a key role in polio 111 

eradication schemes in Israel, India and Egypt (WHO, 2020; Ashgar et al., 2014; Holm-112 

Hansson et al., 2017). The first SARS-CoV-2 wastewater surveillance studies were 113 

undertaken in the Netherlands, with viral RNA material detected in wastewater treatment 114 

influent samples in seven Dutch cities and the international airport (Medema et al., 2020a). 115 



This landmark study included data on the detection of viral fragments in wastewater in one 116 

city prior to the detection of any clinical cases. This potential to provide an early warning on 117 

the presence of the virus within a community is a proof-of-concept and an evidence base that 118 

could be used by public health teams as a trigger to intensify clinical testing, facilitating the 119 

identification and isolation of positive cases (Thompson et al., 2020; POST, 2020). Hence, the 120 

use of wastewater surveillance for SARS-CoV-2 as a tool to address the COVID19 pandemic 121 

is a new application of an established method in a rapidly moving field.  122 

 123 

SARS-CoV-2 wastewater surveillance studies to date have demonstrated the occurrence of 124 

its RNA genome in a range of compartments, primarily WWTP influents but it has also been 125 

reported in sludge and effluents as well as within receiving waters (Jones et al., 2020; 126 

Randazzo et al., 2020). In terms of infectivity potential of wastewater containing SARS-CoV-127 

2 RNA, initial studies (Westhaus et al., 2021; Rimoldi et al., 2020; Bivins et al., 2020a) and 128 

expert opinion (WHO, 2020; Jones et al., 2020) indicate that detected RNA materials do not 129 

occur in the form of an infectious viral particle. Further studies also looked to establish a 130 

quantitative relationship between viral load and number of clinical cases reported within a 131 

catchment (Vallejo et al., 2020; Ahmed et al., 2020). However, variations in the load and 132 

duration of viral material shed in faeces by asymptomatic, pre-symptomatic and symptomatic 133 

cases, together with limited understanding of the fate of viral particles within sewer systems 134 

(which vary significantly in design and flow dynamics), and variations in analytical protocols 135 

and their associated extraction efficiencies, generates considerable uncertainty in terms of 136 

directly relating viral loads to numbers of cases. Hence, many open challenges exist within 137 

this research area and use of data by public health teams. Within the field, key research 138 

questions encompass the potential for viral materials to adsorb to biofilm and particles, 139 

degrade in the sewage system and optimising sample collection processes, including 140 

collection location and frequency (WHO, 2020). Moreover, the need to standardise and 141 

optimise analytical protocols has been clearly identified (Michael-Kordatou et al., 2020). In 142 

terms of interpreting data, key issues include data comparability between studies (e.g. use of 143 



a common marker for normalisation and how contextual data e.g. flow and other parameters 144 

are included in data interpretation), the identification of a SARS-CoV-2 RNA threshold value 145 

and the actions that exceeding a threshold value should trigger (Medema et al., 2020b). 146 

Variations in the amount of viral RNA excreted per person are a further unknown, and inherent 147 

levels of variability in shedding may make accurate predictions of prevalence impossible. 148 

However, the absence of an absolute understanding of shedding rate behaviour does not 149 

preclude the use of this approach in public health contexts, where relative changes in signal 150 

(as opposed to its absolute value) can provide public health teams with valuable data. Further 151 

open questions remain over ethical aspects related to the use of wastewater surveillance, and 152 

the need to develop a social license to operate if the approach is to be successfully adopted. 153 

Whilst ethical aspects have been largely overlooked during the current health emergency, 154 

developments in near source tracking e.g. analysis of wastewater from aeroplanes, hospitals 155 

and schools (Ahmed et al., 2020; Gonçalvesa et al., 2021; Hassard et al., 2020, Hong et al., 156 

2021) is rapidly pushing this issue up the research and practice agenda. In this article a 157 

bottom-up, collaborative approach to enabling researchers to systematically and rapidly share 158 

raw data on traditional wastewater parameters, the occurrence of SARS-CoV-2 and clinical 159 

case numbers is presented, as both a resource for researchers and a tool to facilitate 160 

discussion with public health teams.  161 

 162 

2. The use of wastewater surveillance data within public health decision-making 163 

Wastewater surveillance can be used to non-invasively screen ‘hard to test’ communities (i.e. 164 

where uptake of testing is low or challenging for resource reasons) at a sewer catchment level 165 

as a new public health tool to understand COVID-19 spread (CDC, 2020; POST, 2020). 166 

Detection of SARS-CoV-2 RNA fragments in wastewater is independent of clinical testing 167 

strategy bias (Thompson et al., 2020), can be used as an early warning of the need for further 168 

testing (e.g. reallocating/increasing local testing resources such as drive-through test facilities) 169 

or the implementation of wastewater surveillance upstream of the WWTP i.e. near-source 170 

tracking to identify location of cases (Hassard et al., 2020). For example, the detection of 171 



SARS-CoV-2 RNA concentrations can indicate the (re-)emergence of the virus in a catchment 172 

following a period of no clinical cases and an increase in viral RNA load can indicate the 173 

occurrence of new outbreaks, requiring the urgent tracing of infected individuals and their 174 

subsequent support to isolate (DEFRA, 2020). Likewise decreasing prevalence can indicate 175 

that infected individuals are ‘known’ and isolation/public health interventions are effective. 176 

Further, an increase in viral load over time against a trend of ‘no-change’ in daily positive case 177 

numbers could indicate that the clinical testing regime should be intensified (i.e. new cases 178 

are not being detected) (Thompson et al., 2020). Wastewater surveillance data sets can also 179 

be used to evidence the effect of alternative policy actions e.g. curfew vs local lockdown vs 180 

national lockdown at a community level, as well as track progress of vaccination campaigns.  181 

 182 

To deliver these types of actionable outcomes i.e. to enable public health authorities to use 183 

wastewater surveillance data within their community level decision-making processes requires 184 

activities on several fronts. As well as addressing the wastewater surveillance methodological 185 

and analytical challenges identified earlier, data from wastewater needs to be collected 186 

frequently and available rapidly in a format that is useful and useable by public health 187 

practitioners. Further collaboration between wastewater and public health practitioners is 188 

required to ensure that public health teams can access the type of data they require in a 189 

timeframe and format that integrates with current pandemic mitigation measures i.e. 190 

addressing public health data requirements needs to be front and centre of operationalising 191 

this new development in wastewater surveillance. The format and sampling strategies 192 

underpinning wastewater data sets may need to morph in terms of the locations and frequency 193 

of sample collection, quality assurance/quality control processes, scale at which data is 194 

generated and made available and the aspects of primary value from a public health 195 

perspective i.e. absolute values or trends analysis. Delivering this type of integrated data share 196 

‘dashboard’ is already challenging under usual working conditions; working across disciplines 197 

during a pandemic when public health teams are at (or beyond) full capacity is extremely 198 

challenging. However, collaboration between public health and wastewater researchers – 199 



where public health practitioners take a lead role in determining dashboard development - is 200 

happening. For example, in Australia, the development of a SARS-CoV-2 wastewater 201 

surveillance dashboard was led by a collaboration between the Victorian state public health 202 

team and Water Research Australia. This has already matured from a research and 203 

development phase to an operational tool for day-to-day use with functional dashboards for 204 

both internal and external communications (Victoria State Government, 2020). Other countries 205 

with established monitoring programs include Canada (https://cwn-rce.ca/covid-19-206 

wastewater-coalition/),Finland 207 

(https://www.thl.fi/episeuranta/jatevesi/jatevesiseuranta_viikkoraportti.html), Luxembourg 208 

(https://www.list.lu/en/covid-19/), Greece (http://trams.chem.uoa.gr/covid-19/), the 209 

Netherlands (https://www.rivm.nl/en/covid-19/sewage), and Spain 210 

(https://www.miteco.gob.es/es/agua/temas/concesiones-y-autorizaciones/vertidos-de-aguas-211 

residuales/alerta-temprana-covid19/default.aspx). In the UK, sharing of data between a 212 

government-led wastewater surveillance project and the national COVID-19 ‘track and trace’ 213 

programme led to the identification of an increase in SARS-CoV-2 RNA in wastewater despite 214 

relatively low numbers of people taking clinical tests (DEFRA, 2020). This data was used to 215 

alert local health professionals to contact people in the area to warn of the increase in cases 216 

and encourage local populations to engage with clinical testing programmes.  217 

 218 

The need for and benefits of collaboration among wastewater researchers has been 219 

recognised and several international and national collaborations rapidly established (e.g. 220 

Bivins et al., 2020b; WRF, 2020; WHO, 2020; JRC, 2020; Réseau Obépine, 2020; WRA, 2020; 221 

UCMERCED, 2020). These have focussed primarily on technical and analytical issues, 222 

facilitating opportunities for rapid discussion on a range of topics from recent publications to 223 

method development, predictive modelling and risk assessment. However, collaboration 224 

activities to-date have yet to address two key issues: firstly, the development of an open-225 

access data platform to enable and facilitate the rapid sharing and critical evaluation of multiple 226 

https://www.thl.fi/episeuranta/jatevesi/jatevesiseuranta_viikkoraportti.html
http://trams.chem.uoa.gr/covid-19/
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wastewater meta-data sets to address technical issues (Bivins et al., 2020a). Secondly, 227 

engagement with public health authorities i.e. development of a critical mass of public health 228 

and wastewater researchers to collaboratively identify and deliver an operational SARS-CoV-229 

2 wastewater surveillance public health system.  230 

 231 

3. Open access data sharing to progress collaboration across disciplines  232 

The NORMAN/SCORE SARS-COV-2 in sewage (SC2S) database is a platform, which can 233 

contribute to meeting both these needs. This open-access database is an output of the 234 

collaboration between two international networks: the NORMAN network (www.norman-235 

network.net/) of research organisations supporting the validation and harmonisation of 236 

measurement methods and monitoring tools and SCORE (https://score-cost.eu) a network 237 

established to harmonise methodologies for measuring human biomarkers in wastewater to 238 

evaluate lifestyle, health and exposure at the community level. The database is located within 239 

the NORMAN Database System at https://www.norman-network.com/nds/ as the latest 240 

addition to its 13 database modules within the interlinked database system series for the 241 

collection and evaluation of data / information on emerging substances in the environment 242 

(Dulio et al., 2020). The SC2S database structure follows that of the NORMAN Antibiotic 243 

Resistance Bacteria/Genes database, enabling users to freely access data at a WWTP level 244 

as well us upload new data via a customised data collection template (DCT; downloadable 245 

from the website) which facilitates its automatic uploading to the system. On accessing the 246 

database, users can search via country and/or WWTP or view the entire data set (both within 247 

the database or it can be exported into MS Excel) without any restrictions. Data displayed in 248 

the dashboard includes sampling date, gene copy (number of copies /mL and/or ng of 249 

RNA/mL), cycle threshold (Ct), WWTP and country name, population served and the number 250 

of people reported SARS-CoV-2 positive in the sewer catchment area on the day of sampling. 251 

Table 1 identifies the requested reporting parameters and provides an overview of their role 252 

in interpreting generated data sets. Finally, the full DCT containing all reported data on all 253 

parameters can be downloaded for each dataset. In terms of engaging the attention of public 254 

http://www.norman-network.net/
http://www.norman-network.net/
https://score-cost.eu/
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health authorities, as a first step it includes both wastewater and clinical case data. In addition, 255 

and perhaps more importantly, it is a starting point for further discussions with public health 256 

practitioners on what wastewater surveillance is, the types of longitudinal data sets it can 257 

produce (together with process controls), and the potential of this non-invasive approach as a 258 

tool to provide an early warning of new clusters as well as the impact of existing pandemic 259 

mitigation measures.  260 

 261 

To launch the database, invitations to participate were initially shared through both the 262 

NORMAN and SCORE networks, with a request for members to disseminate further through 263 

their own networks. To harmonise activities, participants were provided with a common 264 

protocol covering sample collection, RNA extraction and analysis. The common protocol 265 

(available at https://www.norman-network.com/nds/sars_cov_2/) adopts the Medema et al 266 

(2020) methodology with an alternative simplified protocol for SARS-CoV-2 extraction from 267 

wastewater via polyethylene glycol (PEG) precipitation (recognising that many 268 

consumables/equipment currently in short supply). Given the logistical challenges and 269 

urgency to share data quickly, participating laboratories did not undertake an inter- laboratory 270 

validation procedure but were asked to report their laboratory QA/QC procedures in full. 271 

Submission of data using both methods is welcomed, with space on the DCT to identify which 272 

approach was used and the genes targeted. A further step was to establish a ‘buddy system’ 273 

for research groups who were able to collect wastewater samples but whose laboratories were 274 

under lock-down and/or were not familiar with RNA analysis. As such, the rapid sharing of a 275 

common protocol also had a capacity building effect, enabling many groups to explore 276 

opportunities to undertake wastewater surveillance for pathogens for the first time. Two 277 

scheduled sampling campaigns were held on June 1st 2020 and June 15th 2020, with data 278 

referring to further identified sampling campaigns now welcomed. To date the SC2S database 279 

contains 276 sets of data from nine different countries (see Figure 1).  280 

 281 

https://www.norman-network.com/nds/sars_cov_2/


The impact of pandemic mitigation measures on working conditions impacted on the ability to 282 

both collect and manage samples e.g. reduced access to WWTPs and laboratories, 283 

consumables and/or work force. Further, whilst the DCTs were developed to support 284 

systematic data reporting, not all laboratories were able to provide all requested data due to 285 

the on-going challenges experienced by many research groups in terms of access to 286 

laboratories, shortages/delays in shipping consumables and reduced work force. 287 

Nevertheless, all received data sets were uploaded to achieve the aim of rapid data share as 288 

a compliment to ongoing efforts to standardise sampling and analytical protocols. 289 

Downloading the current data set shows that 24-hour composite samples (either volume-290 

weighted or time-weighted) were collected on several dates on or close to scheduled sampling 291 

dates (from 24th May 2020 – 16th June 2020) with grab and/or composite samples collected 292 

on further as local conditions permitted. Sample preparation date, date of analysis and storage 293 

conditions were identified, together with the method used for sample preparation, RNA 294 

extraction, analysis and the use of internal standards in the sample preparation phase (61% 295 

of samples) and the RNA extraction step (88% of samples). Reviewing the data set as a whole, 296 

a positive signal for SARS-CoV-2 was quantified in 167 of the 276 samples analysed. Of these 297 

167 samples, the N1 gene was quantified in 18 samples, N2 gene in 8 samples, a combined 298 

measure of N1 and N2 in 133 samples and the E gene in 3 samples. Ct counts ranged from 299 

31.9 - 41.9 (median 35), with the number of gene copies/ml ranging from 0.04 – 148 gene 300 

copies/mL (median: 10.6 gene copies/mL). In terms of quality control, reported analysis 301 

included two to six replicates per sample with the use of a positive control reported in the 302 

analyses of 268 of the 276 samples. The analytical limit of detection was reported on 173 303 

occasions (range: 3 – 5 gene copies/ml for N1 gene; 0.5-5 gene copies/ml for N2 gene; 0.75 304 

gene copies/ml for N1/N2 combined gene measurement;  0.5 - 100 gene copies/mL for E 305 

gene), with a study by Philo et al. (2021) suggesting that the variability in detection between 306 

target genes could be due to variations in the performance of assays or differential rates of 307 

degradation in the target genetic material. No study reported their limit of quantification. In 308 

terms of clinical data, the number of positive cases reported in the local municipality (which 309 



may/may not reflect the sewer catchment) on the day of sampling was reported for 260 of the 310 

276 samples analysed (range: 0 – 1701; median = 239 cases). Whilst at sewer catchment 311 

level, ethical issues around participant anonymity and data protection is generally not an issue. 312 

However, as contributing areas reduce to, for example, an individual building level, the need 313 

to systematically and robustly consider the use of generated data at source and further 314 

downstream (i.e. secondary data use) becomes increasingly urgent. 315 

4. Conclusions 316 

The current data hosted by the SC2S provides a snapshot of the occurrence of SARS-CoV-2 317 

in wastewater at participating WWTPs and demonstrates the ad-hoc cooperation of the 318 

scientific community on data collection. However, more importantly, the NORMAN/SCORE 319 

initiative:  320 

 demonstrates that the SC2S database is a workable multi-jurisdictional data-share 321 

platform with potential to facilitate development of an international dataset  322 

 provides a tool to engage and inform discussions with public health practitioners on 323 

the potential role of wastewater surveillance as an additional approach to integrate 324 

within community public health strategies 325 

 is open to all (contributors are warmly invited to submit data from any campaigns they 326 

are able to share, using the relevant sections on the DCT to document sample 327 

collection, storage and analytical details together with clinical case numbers)  328 

 with continued use, this collection of wastewater meta-data will support a retrospective 329 

analysis of the impact of differing sewer/catchment/population variables on the use of 330 

wastewater surveillance as a tool in public health practice 331 

 facilitated the collection of comparable data sets from an early phase of the pandemic; 332 

continued use will provides an opportunity to maximise operational insights gained 333 

during different phases of the pandemic and support development of robust best 334 

practice in wastewater surveillance. 335 

 336 
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