12 research outputs found

    Detection of Horizontal Gene Transfers from Phylogenetic Comparisons

    Get PDF
    Bacterial phylogenies have become one of the most important challenges for microbial ecology. This field started in the mid-1970s with the aim of using the sequence of the small subunit ribosomal RNA (16S) tool to infer bacterial phylogenies. Phylogenetic hypotheses based on other sequences usually give conflicting topologies that reveal different evolutionary histories, which in some cases may be the result of horizontal gene transfer events. Currently, one of the major goals of molecular biology is to understand the role that horizontal gene transfer plays in species adaptation and evolution. In this work, we compared the phylogenetic tree based on 16S with the tree based on dszC, a gene involved in the cleavage of carbon-sulfur bonds. Bacteria of several genera perform this survival task when living in environments lacking free mineral sulfur. The biochemical pathway of the desulphurization process was extensively studied due to its economic importance, since this step is expensive and indispensable in fuel production. Our results clearly show that horizontal gene transfer events could be detected using common phylogenetic methods with gene sequences obtained from public sequence databases

    The role of mycorrhization helper bacteria in the establishment and action of ectomycorrhizae associations

    Get PDF
    More than 95 % short roots of most terrestrial plants are colonized by mycorrhizal fungi as soon as they emerge in the upper soil profiles. The establishment of mycorrhizal association involves profound morphological and physiological changes in root and fungus. It is affected by other rhizospheric microorganisms, specifically by the bacteria. Bacteria may have developed mechanisms of selective interaction with surrounding microorganisms, with neutral or positive effects on mycorrhizal associations, but negative effect on root pathogens in general. Because of the beneficial effect of bacteria on mycorrhizae, the concept of Mycorrhization Helper Bacteria (MHB) was created. Five main actions of MHB on mycorrhizae were proposed: in the receptivity of root to the mycobiont, in root-fungus recognition, in fungal growth, in the modification of rhizospheric soil and in the germination of fungal propagules. MHB appear to develop a gradation of specificity for the mycobiont, but little or no specificity for the host plant in symbiosis. One of the main groups of MHB is the fluorescent Pseudomonas, well represented in diversity and cell density studies of mycorrhizal associations. This review covers the activity of MHB in the establishment of ectomycorrhizae, taking as model the effects of Pseudomonas sp. described in scientific literature

    Characterization of bacterial strains capable of desulphurisation in soil and sediment samples from Antarctica.

    No full text
    The presence of sulphur in fossil fuels and the natural environment justifies the study of sulphur-utilising bacterial species and genes involved in the biodesulphurisation process. Technology has been developed based on the natural ability of microorganisms to remove sulphur from polycyclic aromatic hydrocarbon chains. This biotechnology aims to minimise the emission of sulphur oxides into the atmosphere during combustion and prevent the formation of acid rain. In this study, the isolation and characterization of desulphurising microorganisms in rhizosphere and bulk soil samples from Antarctica that were either contaminated with oil or uncontaminated was described. The growth of selected isolates and their capacity to utilise sulphur based on the formation of the terminal product of desulphurisation via the 4S pathway, 2-hydroxybiphenyl, was analysed. DNA was extracted from the isolates and BOX-PCR and DNA sequencing were performed to obtain a genomic diversity profile of cultivable desulphurising bacterial species. Fifty isolates were obtained showing the ability of utilising dibenzothiophene as a substrate and sulphur source for maintenance and growth when plated on selective media. However, only seven genetically diverse isolates tested positive for sulphur removal using the Gibbs assay. DNA sequencing revealed that these isolates were related to the genera Acinetobacter and Pseudomonas

    The increase of N availability via atmospheric deposition and the reproduction phenology in Habenaria caldensis Kraenzl. (Orchidaceae) in the Parque Estadual do Itacolomi (PEIT) – MG, Brazil.

    No full text
    Ao lado do aumento da concentração de CO2, a deposição atmosférica de N é atualmente considerada um dos mais importantes fatores de alteração do funcionamento dos ecossistemas nativos, tendo já provocado drásticas mudanças na composição florística e na ciclagem de nutrientes no hemisfério norte. Entretanto, em sistemas tropicais e subtropicais, pouco se sabe sobre os efeitos do enriquecimento de N via deposição atmosférica, sobre o seu funcionamento. A compreensão da amplitude e da direção das respostas de orquídeas ao aumento da concentração de N disponível pode ajudar a alimentar modelos de dinâmica de populações rupícolas em resposta às mudanças globais. Avaliamos as respostas de floração e frutificação em plantas de Habenaria caldensis Kraenzl. (Orchidaceae), espécie de ampla distribuição em Minas Gerais, em consequência do aumento da disponibilidade de N por meio de fertilizações com nitrato de amônio, in situ, por aspersão. Em resposta à adição de N, a antese foi adiantada em cerca de 15 dias em relação aos indivíduos do grupo controle. Pelos resultados obtidos, o aumento da disponibilidade de N via deposição atmosférica pode afetar em curto prazo a ecologia de orquídeas e possivelmente outras plantas de campos rupestres alterando seus padrões fenológicos e alométricos. Em médio e longo prazos, tais modificações podem ter relevante impacto sobre a dinâmica de populações e comunidades desse tipo vegetacional.Along with the increased concentration of CO2, the atmospheric deposition of nitrogen is currently considered one of the most important factors of change in the functioning of native ecosystems and has caused drastic changes in their floristic composition and nutrient cycling in the northern hemisphere. In tropical and subtropical systems, however, the largest holders of the plants diversity, little is known about the effects of the nitrogen enrichment via deposition on their performance. Understanding the magnitude and direction of the responses of the orchids to the increase of the concentration of available nitrogen might be helpful to modeling of rock outcrops population dynamics in response to global changes. We evaluated the responses of flowering and fruiting in plants of Habenaria caldensis Kraenzl. (Orchidaceae), a species widely distributed in Minas Gerais, as a result of increased nitrogen availability through fertilization with ammonium nitrate, in situ, by spraying. In response to the addition of N, anthesis occurred about 15 days earlier compared to individuals of the control group. The results of this study demonstrated that the increased availability of N via atmospheric deposition can affect in a short term the ecology of orchids and possibly other plants from rock outcrops by changing their phenological and allometric patterns. In a medium and long term, such changes can have an important impact on the dynamics of populations and communities of this vegetation type

    Research Article Detection of Horizontal Gene Transfers from Phylogenetic Comparisons

    No full text
    Copyright © 2012 Victor Satler Pylro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Bacterial phylogenies have become one of the most important challenges for microbial ecology. This field started in the mid-1970s with the aim of using the sequence of the small subunit ribosomal RNA (16S) tool to infer bacterial phylogenies. Phylogenetic hypotheses based on other sequences usually give conflicting topologies that reveal different evolutionary histories, which in some cases may be the result of horizontal gene transfer events. Currently, one of the major goals of molecular biology is to understand the role that horizontal gene transfer plays in species adaptation and evolution. In this work, we compared the phylogenetic tree based on 16S with the tree based on dszC, a gene involved in the cleavage of carbon-sulfur bonds. Bacteria of several genera perform this survival task when living in environments lacking free mineral sulfur. The biochemical pathway of the desulphurization process was extensively studied due to its economic importance, since this step is expensive and indispensable in fuel production

    Analysis of Bacterial Community Structure in Sulfurous-Oil-Containing Soils and Detection of Species Carrying Dibenzothiophene Desulfurization (dsz) Genes

    No full text
    The selective effects of sulfur-containing hydrocarbons, with respect to changes in bacterial community structure and selection of desulfurizing organisms and genes, were studied in soil. Samples taken from a polluted field soil (A) along a concentration gradient of sulfurous oil and from soil microcosms treated with dibenzothiophene (DBT)-containing petroleum (FSL soil) were analyzed. Analyses included plate counts of total bacteria and of DBT utilizers, molecular community profiling via soil DNA-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE), and detection of genes that encode enzymes involved in the desulfurization of hydrocarbons, i.e., dszA, dszB, and dszC.Data obtained from the A soil showed no discriminating effects of oil levels on the culturable bacterial numbers on either medium used. Generally, counts of DBT degraders were 10- to 100-fold lower than the total culturable counts. However, PCR-DGGE showed that the numbers of bands detected in the molecular community profiles decreased with increasing oil content of the soil. Analysis of the sequences of three prominent bands of the profiles generated with the highly polluted soil samples suggested that the underlying organisms were related to Actinomyces sp., Arthrobacter sp., and a bacterium of uncertain affiliation. dszA, dszB, and dszC genes were present in all A soil samples, whereas a range of unpolluted soils gave negative results in this analysis. Results from the study of FSL soil revealed minor effects of the petroleum-DBT treatment on culturable bacterial numbers and clear effects on the DBT-utilizing communities. The molecular community profiles were largely stable over time in the untreated soil, whereas they showed a progressive change over time following treatment with DBT-containing petroleum. Direct PCR assessment revealed the presence of dszB-related signals in the untreated FSL soil and the apparent selection of dszA- and dszC-related sequences by the petroleum-DBT treatment. PCR-DGGE applied to sequential enrichment cultures in DBT-containing sulfur-free basal salts medium prepared from the A and treated FSL soils revealed the selection of up to 10 distinct bands. Sequencing a subset of these bands provided evidence for the presence of organisms related to Pseudomonas putida, a Pseudomonas sp., Stenotrophomonas maltophilia, and Rhodococcus erythropolis. Several of 52 colonies obtained from the A and FSL soils on agar plates with DBT as the sole sulfur source produced bands that matched the migration of bands selected in the enrichment cultures. Evidence for the presence of dszB in 12 strains was obtained, whereas dszA and dszC genes were found in only 7 and 6 strains, respectively. Most of the strains carrying dszA or dszC were classified as R. erythropolis related, and all revealed the capacity to desulfurize DBT. A comparison of 37 dszA sequences, obtained via PCR from the A and FSL soils, from enrichments of these soils, and from isolates, revealed the great similarity of all sequences to the canonical (R. erythropolis strain IGTS8) dszA sequence and a large degree of internal conservation. The 37 sequences recovered were grouped in three clusters. One group, consisting of 30 sequences, was minimally 98% related to the IGTS8 sequence, a second group of 2 sequences was slightly different, and a third group of 5 sequences was 95% similar. The first two groups contained sequences obtained from both soil types and enrichment cultures (including isolates), but the last consisted of sequences obtained directly from the polluted A soil

    Safety of primary anastomosis following emergency left sided colorectal resection: an international, multi-centre prospective audit.

    Get PDF
    This is the peer reviewed version of the following article: group, T. E. S. o. C. c. (2018). "Safety of primary anastomosis following emergency left sided colorectal resection: an international, multi-centre prospective audit." Colorectal Disease 20(S6): 47-57., which has been published in final form at https://doi.org/10.1111/codi.1437. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived VersionsINTRODUCTION: Some evidence suggests that primary anastomosis following left sided colorectal resection in the emergency setting may be safe in selected patients, and confer favourable outcomes to permanent enterostomy. The aim of this study was to compare the major postoperative complication rate in patients undergoing end stoma vs primary anastomosis following emergency left sided colorectal resection. METHODS: A pre-planned analysis of the European Society of Coloproctology 2017 audit. Adult patients (> 16 years) who underwent emergency (unplanned, within 24 h of hospital admission) left sided colonic or rectal resection were included. The primary endpoint was the 30-day major complication rate (Clavien-Dindo grade 3 to 5). RESULTS: From 591 patients, 455 (77%) received an end stoma, 103 a primary anastomosis (17%) and 33 primary anastomosis with defunctioning stoma (6%). In multivariable models, anastomosis was associated with a similar major complication rate to end stoma (adjusted odds ratio for end stoma 1.52, 95%CI 0.83-2.79, P = 0.173). Although a defunctioning stoma was not associated with reduced anastomotic leak (12% defunctioned [4/33] vs 13% not defunctioned [13/97], adjusted odds ratio 2.19, 95%CI 0.43-11.02, P = 0.343), it was associated with less severe complications (75% [3/4] with defunctioning stoma, 86.7% anastomosis only [13/15]), a lower mortality rate (0% [0/4] vs 20% [3/15]), and fewer reoperations (50% [2/4] vs 73% [11/15]) when a leak did occur. CONCLUSIONS: Primary anastomosis in selected patients appears safe after left sided emergency colorectal resection. A defunctioning stoma might mitigate against risk of subsequent complications

    The impact of conversion on the risk of major complication following laparoscopic colonic surgery: an international, multicentre prospective audit.

    Get PDF
    This is the peer reviewed version of the following article: The and E. S. o. C. c. groups (2018). "The impact of conversion on the risk of major complication following laparoscopic colonic surgery: an international, multicentre prospective audit." Colorectal Disease 20(S6): 69-89., which has been published in final form at https://doi.org/10.1111/codi.14371. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.BACKGROUND: Laparoscopy has now been implemented as a standard of care for elective colonic resection around the world. During the adoption period, studies showed that conversion may be detrimental to patients, with poorer outcomes than both laparoscopic completed or planned open surgery. The primary aim of this study was to determine whether laparoscopic conversion was associated with a higher major complication rate than planned open surgery in contemporary, international practice. METHODS: Combined analysis of the European Society of Coloproctology 2017 and 2015 audits. Patients were included if they underwent elective resection of a colonic segment from the caecum to the rectosigmoid junction with primary anastomosis. The primary outcome measure was the 30-day major complication rate, defined as Clavien-Dindo grade III-V. RESULTS: Of 3980 patients, 64% (2561/3980) underwent laparoscopic surgery and a laparoscopic conversion rate of 14% (359/2561). The major complication rate was highest after open surgery (laparoscopic 7.4%, converted 9.7%, open 11.6%, P < 0.001). After case mix adjustment in a multilevel model, only planned open (and not laparoscopic converted) surgery was associated with increased major complications in comparison to laparoscopic surgery (OR 1.64, 1.27-2.11, P < 0.001). CONCLUSIONS: Appropriate laparoscopic conversion should not be considered a treatment failure in modern practice. Conversion does not appear to place patients at increased risk of complications vs planned open surgery, supporting broadening of selection criteria for attempted laparoscopy in elective colonic resection
    corecore