101 research outputs found

    B-mode Detection with an Extended Planck Mission

    Full text link
    The Planck satellite has a nominal mission lifetime of 14 months allowing two complete surveys of the sky. Here we investigate the potential of an extended Planck mission of four sky surveys to constrain primordial B-mode anisotropies in the presence of dominant Galactic polarized foreground emission. An extended Planck mission is capable of powerful constraints on primordial B-modes at low multipoles, which cannot be probed by ground based or sub-orbital experiments. A tensor-scalar ratio of r=0.05 can be detected at a high significance level by an extended Planck mission and it should be possible to set a 95% upper limit on r of 0.03 if the tensor-scalar ratio is vanishingly small. Furthermore, extending the Planck mission to four sky surveys offers better control of polarized Galactic dust emission, since the 217 GHz frequency band can be used as an effective dust template in addition to the 353 GHz channel.Comment: 10 pages, 3 figure

    Measuring CMB Polarization with BOOMERANG

    Full text link
    BOOMERANG is a balloon-borne telescope designed for long duration (LDB) flights around Antarctica. The second LDB Flight of BOOMERANG took place in January 2003. The primary goal of this flight was to measure the polarization of the CMB. The receiver uses polarization sensitive bolometers at 145 GHz. Polarizing grids provide polarization sensitivity at 245 and 345 GHz. We describe the BOOMERANG telescope noting changes made for 2003 LDB flight, and discuss some of the issues involved in the measurement of polarization with bolometers. Lastly, we report on the 2003 flight and provide an estimate of the expected results.Comment: 12 pages, 8 figures, To be published in the proceedings of "The Cosmic Microwave Background and its Polarization", New Astronomy Reviews, (eds. S. Hanany and K.A. Olive). Fixed typos, and reformatted citation

    A Constraint on Planck-scale Modifications to Electrodynamics with CMB polarization data

    Full text link
    We show that the Cosmic Microwave Background (CMB) polarization data gathered by the BOOMERanG 2003 flight and WMAP provide an opportunity to investigate {\it in-vacuo} birefringence, of a type expected in some quantum pictures of space-time, with a sensitivity that extends even beyond the desired Planck-scale energy. In order to render this constraint more transparent we rely on a well studied phenomenological model of quantum-gravity-induced birefringence, in which one easily establishes that effects introduced at the Planck scale would amount to values of a dimensionless parameter, denoted by Ο\xi, with respect to the Planck energy which are roughly of order 1. By combining BOOMERanG and WMAP data we estimate Ο≃−0.110±0.076\xi \simeq -0.110 \pm 0.076 at the 68% c.l. Moreover, we forecast on the sensitivity to Ο\xi achievable by future CMB polarization experiments (PLANCK, Spider, EPIC), which, in the absence of systematics, will be at the 1-σ\sigma confidence of 8.5×10−48.5 \times 10^{-4} (PLANCK), 6.1×10−36.1 \times 10^{-3} (Spider), and 1.0×10−51.0 \times 10^{-5} (EPIC) respectively. The cosmic variance-limited sensitivity from CMB is 6.1×10−66.1\times 10^{-6}.Comment: 16 page

    SPIDER: Probing the Early Universe with a Suborbital Polarimeter

    Full text link
    We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a divergence-free polarization pattern ("B-modes") in the Cosmic Microwave Background (CMB). In the inflationary scenario, the amplitude of this signal is proportional to that of the primordial scalar perturbations through the tensor-to-scalar ratio r. We show that the expected level of systematic error in the SPIDER instrument is significantly below the amplitude of an interesting cosmological signal with r=0.03. We present a scanning strategy that enables us to minimize uncertainty in the reconstruction of the Stokes parameters used to characterize the CMB, while accessing a relatively wide range of angular scales. Evaluating the amplitude of the polarized Galactic emission in the SPIDER field, we conclude that the polarized emission from interstellar dust is as bright or brighter than the cosmological signal at all SPIDER frequencies (90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the "Southern Hole." We show that two ~20-day flights of the SPIDER instrument can constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when foreground contamination is taken into account. In the absence of foregrounds, the same limit can be reached after one 20-day flight.Comment: 29 pages, 8 figures, 4 tables; v2: matches published version, flight schedule updated, two typos fixed in Table 2, references and minor clarifications added, results unchange

    Inflation Physics from the Cosmic Microwave Background and Large Scale Structure

    Get PDF
    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1 of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds

    Planck intermediate results. VIII. Filaments between interacting clusters

    Get PDF
    About half of the baryons of the Universe are expected to be in the form of filaments of hot and low density intergalactic medium. Most of these baryons remain undetected even by the most advanced X-ray observatories which are limited in sensitivity to the diffuse low density medium. The Planck satellite has provided hundreds of detections of the hot gas in clusters of galaxies via the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for studying extended low density media through the tSZ effect. In this paper we use the Planck data to search for signatures of a fraction of these missing baryons between pairs of galaxy clusters. Cluster pairs are good candidates for searching for the hotter and denser phase of the intergalactic medium (which is more easily observed through the SZ effect). Using an X-ray catalogue of clusters and the Planck data, we select physical pairs of clusters as candidates. Using the Planck data we construct a local map of the tSZ effect centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray maps of these pairs. After having modelled and subtracted the tSZ effect and X-ray emission for each cluster in the pair we study the residuals on both the SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a significant tSZ effect signal in the intercluster region beyond the virial radii of the clusters. A joint X-ray SZ analysis allows us to constrain the temperature and density of this intercluster medium. We obtain a temperature of kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the first SZ detection of the hot and diffuse intercluster gas.Comment: Accepted by A&

    Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources

    Get PDF
    We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > 10310^3 confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples

    The BOOMERanG experiment and the curvature of the Universe

    Get PDF
    We describe the BOOMERanG experiment and its main result, i.e. the measurement of the large scale curvature of the Universe. BOOMERanG is a balloon-borne microwave telescope with sensitive cryogenic detectors. BOOMERanG has measured the angular distribution of the Cosmic Microwave Background on ∌3\sim 3% of the sky, with a resolution of ∌10\sim 10 arcmin and a sensitivity of ∌20ÎŒK\sim 20 \mu K per pixel. The resulting image is dominated by hot and cold spots with rms fluctuations ∌80ÎŒK\sim 80 \mu K and typical size of ∌1o\sim 1^o. The detailed angular power spectrum of the image features three peaks and two dips at ℓ=(213−13+10),(541−32+20),(845−25+12)\ell = (213^{+10}_{-13}), (541^{+20}_{-32}), (845^{+12}_{-25}) and ℓ=(416−12+22),(750−750+20)\ell = (416^{+22}_{-12}), (750^{+20}_{-750}), respectively. Such very characteristic spectrum can be explained assuming that the detected structures are the result of acoustic oscillations in the primeval plasma. In this framework, the measured pattern constrains the density parameter Ω\Omega to be 0.85<Ω<1.10.85 < \Omega < 1.1 (95% confidence interval). Other cosmological parameters, like the spectral index of initial density fluctuations, the density parameter for baryons, dark matter and dark energy, are detected or constrained by the BOOMERanG measurements and by other recent CMB anisotropy experiments. When combined with other cosmological observations, these results depict a new, consistent, cosmological scenario.Comment: Proc. of the Erice School on "Neutrinos in Astro, Particle and Nuclear Physics", 18.-26. September 2001, Amand Faessler, Jan Kuckei eds, "Progress in Particle and Nuclear Physics", vol. 4

    Planck intermediate results: IV. the XMM-Newton validation programme for new Planck galaxy clusters

    Get PDF

    Planck early results XIV : ERCSC validation and extreme radio sources

    Get PDF
    Peer reviewe
    • 

    corecore