14 research outputs found

    The Lantern Vol. 74, No. 2, Spring 2007

    Get PDF
    • La Viuda • The Curb After Light Drizzling • Loose Cream • The Problem of Ants • Streetplay • Avignon, Anno Domini 1348 • Autophagia • Silverette-New Wave Fascist Date Routine • Mint Shavings • Dogtags • Millenials • Rain That Sleeps by Itself at Track Number 5 • Amorphous • I Found a Flashlight • Sippikkul Muthu: Pearl Within Shell • Of Lies • The Complications of a Fish-Only Diet • Ashes • Unto the Fourth Generation • Marooned on Piano Island • Sweethttps://digitalcommons.ursinus.edu/lantern/1170/thumbnail.jp

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    Evaluating Alternate Methods of Determining the Antimicrobial Efficacy of Contact Lens Care Products against Acanthamoeba Trophozoites

    No full text
    Acanthamoeba keratitis (AK) is a serious ocular infection caused by a ubiquitous free-living amoeba, Acanthamoeba. This infection often results in extensive corneal damage and blindness, and is notoriously difficult to cure. While Acanthamoeba is an abundant organism, AK is most associated with contact lens hygiene noncompliance and inadequate contact lens care (CLC) disinfection regimens. Thus, accurate and timely antimicrobial efficacy testing of CLC solutions is paramount. Published methods for antimicrobial efficacy testing of Acanthamoeba trophozoites requires 14 days for results. Presently, alternate and/or rapid methods for evaluating CLC products rarely demonstrate equivalent results compared to commonly-reported methods. Propidium iodide is a cellular stain that can only bind to cells with damaged outer membranes. We evaluated propidium iodide staining as an alternative method for determining the relative antimicrobial efficacy of 11 different CLC products against Acanthamoeba trophozoites. Following exposure to a CLC product, the fluorescence intensity of propidium iodide in an Acanthamoeba population demonstrated a strong correlation to the log reduction determined by established, growth-based Acanthamoeba testing used to evaluate the antimicrobial efficacy of CLC products. Thus, propidium iodide was found to be an effective rapid tool for determining cell death in Acanthamoeba trophozoites following exposure to CLC solutions

    Microbial Adherence to Contact Lenses and Pseudomonas aeruginosa as a Model Organism for Microbial Keratitis

    No full text
    Microbial keratitis (MK), the infection of the cornea, is a devastating disease and the fifth leading cause of blindness and visual impairment around the world. The overwhelming majority of MK cases are linked to contact lens wear combined with factors which promote infection such as corneal abrasion, an immunocompromised state, improper contact lens use, or failing to routinely disinfect lenses after wear. Contact lens-related MK involves the adherence of microorganisms to the contact lens. Therefore, this review discusses the information currently available regarding the disease pathophysiology, the common types of microorganisms causing MK, physical and organic mechanisms of adhesion, material properties which are involved in adhesion, and current antimicrobial strategies. This review also concludes that Pseudomonas aeruginosa is a model organism for the investigation of contact lens microbial adherence due to its prevalence in MK cases, its extremely robust adhesion, antimicrobial-resistant properties, and the severity of the disease it causes

    Evaluation of <i>Serratia marcescens</i> Adherence to Contact Lens Materials

    No full text
    Bacterial keratitis is a risk associated with the use of contact lenses for cosmetic purposes or vision correction. In this in vitro experimental study, we examined the ability of the ocular pathogen Serratia marcescens to adhere to monthly or biweekly replacement contact lenses. We performed quantitative adhesion assays to evaluate the adherence of S. marcescens to seven contact lens materials: comfilcon A, senofilcon A, omafilcon B, fanfilcon A, balafilcon A, senofilcon C, and lehfilcon A. Lehfilcon A is a newly marketed silicon hydrogel contact lens with a surface modification of poly-(2-methacryloyloxyethyl phosphorylcholine) (PMPC). PMPC has previously been demonstrated to be an effective anti-biofouling treatment for numerous surfaces. We observed low S. marcescens adherence to lehfilcon A compared to other materials. We demonstrate the use of the fluorescent dye 5(6)-Carboxytetramethylrhodamine succinimidyl ester to covalently stain live cells prior to material adhesion studies

    Complete Recovery of <i>Acanthamoeba</i> Motility among Surviving Organisms after Contact Lens Care Disinfection

    No full text
    Acanthamoeba keratitis is a sight-threatening infection of the cornea which is extremely challenging to treat. Understanding this organism’s responses during contact lens contact and disinfection could enhance our understanding of how Acanthamoebae colonize contact lens cases, better inform us on contact lens care solution (CLC) efficacy, and help us better understand the efficacy required of CLC products. To explore this gap in knowledge, we used Acanthamoeba ATCC 30461 and ATCC 50370 trophozoites to examine Acanthamoeba behavior during and after CLC disinfection. Amoebae were added to sterile aluminum flow cells and flow cell solutions were changed to Ringer’s solution (control), or one of four CLCs based on biocides (PHMB, PAPB/Polyquad, Polyquad/Aldox, or Polyquad/Alexidine) for 6 h. Each flow cell solution was then changed to axenic culture media (AC6) for 12 h to determine the behavior of amoebae following disinfection. Distance, speed, and displacement were calculated for each organism. As compared to the control of one-quarter Ringer’s solution, each CLC significantly impacted Acanthamoeba motility in both the CLC and AC6 conditions. However, the amoebae challenged with the PHMB CLC traveled a significantly greater total distance than with the other three CLCs, indicating differences in effectiveness between biocides. Furthermore, amoebae regaining motility post-disinfection by CLCs were observed to travel considerable distances and thus could be considered dangerous to ocular health. We determined that while all CLCs produced a substantial or complete cessation of movement vs. the control condition during disinfection, those which relied on the Polyquad biocides were the most effective, and that any amoebae which survived disinfection were able to recover motility. Future examinations of these findings should include direct correlations between motility and viability, and how infectivity and motility may be related

    Variables Affecting the Recovery of <i>Acanthamoeba</i> Trophozoites

    No full text
    While the results of Acanthamoeba testing have been extensively published, laboratories conducting such testing are left to develop their own methods in the absence of a standardized methodology. The wide disparity of methods has resulted in equally inconsistent reported results for contact lens care (CLC) products. This study’s objective was to determine the source of these discrepancies by evaluating basic Acanthamoeba biology and their impact on antimicrobial efficacy testing, including the ability of a recovery method to stimulate a single trophozoite to proliferate. Antimicrobial efficacy testing was conducted using well-published Acanthamoeba strains, storage conditions, and growth-based recovery methods. To identify variables that influence results, test solutions with low Acanthamoeba disinfection rates were utilized to prevent differences from being masked by high log reductions. In addition, single-cell proliferation assays were executed to understand the growth requirements to stimulate trophozoite propagation in two recovery methods. These studies indicated that both nutrient density (>106 CFU) and the length of plate incubation (at least 14 days) could significantly influence the accurate recovery of trophozoites. Together, this study emphasizes the need to understand how Acanthamoeba trophozoites biology can impact test methods to create divergent results

    Complete Recovery of Acanthamoeba Motility among Surviving Organisms after Contact Lens Care Disinfection

    No full text
    Acanthamoeba keratitis is a sight-threatening infection of the cornea which is extremely challenging to treat. Understanding this organism&rsquo;s responses during contact lens contact and disinfection could enhance our understanding of how Acanthamoebae colonize contact lens cases, better inform us on contact lens care solution (CLC) efficacy, and help us better understand the efficacy required of CLC products. To explore this gap in knowledge, we used Acanthamoeba ATCC 30461 and ATCC 50370 trophozoites to examine Acanthamoeba behavior during and after CLC disinfection. Amoebae were added to sterile aluminum flow cells and flow cell solutions were changed to Ringer&rsquo;s solution (control), or one of four CLCs based on biocides (PHMB, PAPB/Polyquad, Polyquad/Aldox, or Polyquad/Alexidine) for 6 h. Each flow cell solution was then changed to axenic culture media (AC6) for 12 h to determine the behavior of amoebae following disinfection. Distance, speed, and displacement were calculated for each organism. As compared to the control of one-quarter Ringer&rsquo;s solution, each CLC significantly impacted Acanthamoeba motility in both the CLC and AC6 conditions. However, the amoebae challenged with the PHMB CLC traveled a significantly greater total distance than with the other three CLCs, indicating differences in effectiveness between biocides. Furthermore, amoebae regaining motility post-disinfection by CLCs were observed to travel considerable distances and thus could be considered dangerous to ocular health. We determined that while all CLCs produced a substantial or complete cessation of movement vs. the control condition during disinfection, those which relied on the Polyquad biocides were the most effective, and that any amoebae which survived disinfection were able to recover motility. Future examinations of these findings should include direct correlations between motility and viability, and how infectivity and motility may be related

    Continuous Real-Time Motility Analysis of Acanthamoeba Reveals Sustained Movement in Absence of Nutrients

    No full text
    Acanthamoeba keratitis is a serious ocular infection which is challenging to treat and can lead to blindness. While this pathogen is ubiquitous and can contaminate contact lenses after contact with water, its habits remain elusive. Understanding this organism’s natural behavior will better inform us on how Acanthamoeba colonize contact lens care systems. Acanthamoeba trophozoites were allowed to adhere to either a glass coverslip or non-nutrient agar (NNA) within a flow cell with nutrients (Escherichia coli or an axenic culture medium (AC6)) or without nutrients (Ringer’s solution). Images were taken once every 24 s over 12 h and compiled, and videos were analyzed using ImageJ Trackmate software. Acanthamoeba maintained continuous movement for the entire 12 h period. ATCC 50370 had limited differences between conditions and surfaces throughout the experiment. Nutrient differences had a noticeable impact for ATCC 30461, where E. coli resulted in the highest total distance and speed during the early periods of the experiment but had the lowest total distance and speed by 12 h. The Ringer’s and AC6 conditions were the most similar between strains, while Acanthamoeba in the E. coli and NNA conditions demonstrated significant differences between strains (p &lt; 0.05). These results indicate that quantifiable visual tracking of Acanthamoeba may be a novel and robust method for identifying the movement of Acanthamoeba in relation to contact lens care products. The present study indicates that Acanthamoeba can undertake sustained movement for at least 12 h with and without nutrients, on both rough and smooth surfaces, and that different strains have divergent behavior
    corecore