1,163 research outputs found

    Role of \u3ci\u3evapBC\u3c/i\u3e toxin–antitoxin loci in the thermal stress response of \u3ci\u3eSulfolobus solfataricus\u3c/i\u3e

    Get PDF
    TA (toxin–antitoxin) loci are ubiquitous in prokaryotic microorganisms, including archaea, yet their physiological function is largely unknown. For example, preliminary reports have suggested that TA loci are microbial stress-response elements, although it was recently shown that knocking out all known chromosomally located TA loci in Escherichia coli did not have an impact on survival under certain types of stress. The hyperthermophilic crenarchaeon Sulfolobus solfataricus encodes at least 26 vapBC (where vap is virulence-associated protein) family TA loci in its genome. VapCs are PIN (PilT N-terminus) domain proteins with putative ribonuclease activity, while VapBs are proteolytically labile proteins, which purportedly function to silence VapCs when associated as a cognate pair. Global transcriptional analysis of S. solfataricus heat-shock-response dynamics (temperature shift from 80 to 90°C) revealed that several vapBC genes were triggered by the thermal shift, suggesting a role in heat-shock-response. Indeed, knocking out a specific vapBC locus in S. solfataricus substantially changed the transcriptome and, in one case, rendered the crenarchaeon heat-shock-labile. These findings indicate that more work needs to be done to determine the role of VapBCs in S. solfataricus and other thermophilic archaea, especially with respect to post-transcriptional regulation

    Role of \u3ci\u3evapBC\u3c/i\u3e toxin–antitoxin loci in the thermal stress response of \u3ci\u3eSulfolobus solfataricus\u3c/i\u3e

    Get PDF
    TA (toxin–antitoxin) loci are ubiquitous in prokaryotic microorganisms, including archaea, yet their physiological function is largely unknown. For example, preliminary reports have suggested that TA loci are microbial stress-response elements, although it was recently shown that knocking out all known chromosomally located TA loci in Escherichia coli did not have an impact on survival under certain types of stress. The hyperthermophilic crenarchaeon Sulfolobus solfataricus encodes at least 26 vapBC (where vap is virulence-associated protein) family TA loci in its genome. VapCs are PIN (PilT N-terminus) domain proteins with putative ribonuclease activity, while VapBs are proteolytically labile proteins, which purportedly function to silence VapCs when associated as a cognate pair. Global transcriptional analysis of S. solfataricus heat-shock-response dynamics (temperature shift from 80 to 90°C) revealed that several vapBC genes were triggered by the thermal shift, suggesting a role in heat-shock-response. Indeed, knocking out a specific vapBC locus in S. solfataricus substantially changed the transcriptome and, in one case, rendered the crenarchaeon heat-shock-labile. These findings indicate that more work needs to be done to determine the role of VapBCs in S. solfataricus and other thermophilic archaea, especially with respect to post-transcriptional regulation

    Reduced Voluntary Running Performance is Associated with Impaired Coordination as a Result of Muscle Satellite Cell Depletion in Adult Mice

    Get PDF
    BACKGROUND: Satellite cells, or muscle stem cells, have been thought to be responsible for all muscle plasticity, but recent studies using genetically modified mouse models that allow for the conditional ablation of satellite cells have challenged this dogma. Results have confirmed the absolute requirement of satellite cells for muscle regeneration but surprisingly also showed that they are not required for adult muscle growth. While the function of satellite cells in muscle growth and regeneration is becoming better defined, their role in the response to aerobic activity remains largely unexplored. The purpose of the current study was to assess the involvement of satellite cells in response to aerobic exercise by evaluating the effect of satellite cell depletion on wheel running performance. RESULTS: Four-month-old female Pax7/DTA mice (n = 8-12 per group) were satellite cell depleted via tamoxifen administration; at 6 months of age, mice either remained sedentary or were provided with running wheels for 8 weeks. Plantaris muscles were significantly depleted of Pax7+cells (≥90 % depleted), and 8 weeks of wheel running did not result in an increase in Pax7+ cells, or in myonuclear accretion. Interestingly, satellite cell-depleted animals ran ~27 % less distance and were 23 % slower than non-depleted animals. Wheel running was associated with elevated succinate dehydrogenase activity, muscle vascularization, lipid accumulation, and a significant shift toward more oxidative myosin heavy chain isoforms, as well as an increase in voltage dependent anion channel abundance, a marker of mitochondrial density. Importantly, these changes were independent of satellite cell content. Interestingly, depletion of Pax7+ cells from intra- as well as extrafusal muscle fibers resulted in atrophy of intrafusal fibers, thickening of muscle spindle-associated extracellular matrix, and a marked reduction of functional outcomes including grip strength, gait fluidity, and balance, which likely contributed to the impaired running performance. CONCLUSIONS: Depletion of Pax7-expressing cells in muscle resulted in reduced voluntary wheel running performance, without affecting markers of aerobic adaptation; however, their absence may perturb proprioception via disruption of muscle spindle fibers resulting in loss of gross motor coordination, indicating that satellite cells have a yet unexplored role in muscle function

    Effects of the potential lithium-mimetic, ebselen, on impulsivity and emotional processing

    Get PDF
    Rationale: Lithium remains the most effective treatment for bipolar disorder and also has important effects to lower suicidal behaviour, a property that may be linked to its ability to diminish impulsive, aggressive behaviour. The antioxidant drug, ebselen, has been proposed as a possible lithium-mimetic based on its ability in animals to inhibit inositol monophosphatase (IMPase), an action which it shares with lithium. Objectives: The aim of the study was to determine whether treatment with ebselen altered emotional processing and diminished measures of risk-taking behaviour. Methods: We studied 20 healthy participants who were tested on two occasions receiving either ebselen (3600 mg over 24 h) or identical placebo in a double-blind, randomized, cross-over design. Three hours after the final dose of ebselen/placebo, participants completed the Cambridge Gambling Task (CGT) and a task that required the detection of emotional facial expressions (facial emotion recognition task (FERT)). Results: On the CGT, relative to placebo, ebselen reduced delay aversion while on the FERT, it increased the recognition of positive vs negative facial expressions. Conclusions: The study suggests that at the dosage used, ebselen can decrease impulsivity and produce a positive bias in emotional processing. These findings have implications for the possible use of ebselen in the disorders characterized by impulsive behaviour and dysphoric mood

    The Freshman, vol. 6, no. 1

    Get PDF
    The Freshman was a weekly, student newsletter issued on Mondays throughout the academic year. The newsletter included calendar notices, coverage of campus social events, lectures, and athletic teams. The intent of the publication was to create unity, a sense of community, and class spirit among first year students

    Structure of the MlaC-MlaD complex reveals molecular basis of periplasmic phospholipid transport

    Get PDF
    The Maintenance of Lipid Asymmetry (Mla) pathway is a multicomponent system found in all gram-negative bacteria that contributes to virulence, vesicle blebbing and preservation of the outer membrane barrier function. It acts by removing ectopic lipids from the outer leaflet of the outer membrane and returning them to the inner membrane through three proteinaceous assemblies: the MlaA-OmpC complex, situated within the outer membrane; the periplasmic phospholipid shuttle protein, MlaC; and the inner membrane ABC transporter complex, MlaFEDB, proposed to be the founding member of a structurally distinct ABC superfamily. While the function of each component is well established, how phospholipids are exchanged between components remains unknown. This stands as a major roadblock in our understanding of the function of the pathway, and in particular, the role of ATPase activity of MlaFEDB is not clear. Here, we report the structure of E. coli MlaC in complex with the MlaD hexamer in two distinct stoichiometries. Utilising in vivo complementation assays, an in vitro fluorescence-based transport assay, and molecular dynamics simulations, we confirm key residues, identifying the MlaD β6-β7 loop as essential for MlaCD function. We also provide evidence that phospholipids pass between the C-terminal helices of the MlaD hexamer to reach the central pore, providing insight into the trajectory of GPL transfer between MlaC and MlaD

    Acceptance and Commitment Therapy for people living with motor neuron disease: an uncontrolled feasibility study

    Get PDF
    Background: Motor neuron disease (MND) is a fatal, progressive neurodegenerative disease that causes progressive weakening and wasting of limb, bulbar, thoracic and abdominal muscles. Clear evidence-based guidance on how psychological distress should be managed in people living with MND (plwMND) is lacking. Acceptance and Commitment Therapy (ACT) is a form of psychological therapy that may be particularly suitable for this population. However, to the authors' knowledge, no study to date has evaluated ACT for plwMND. Consequently, the primary aim of this uncontrolled feasibility study was to examine the feasibility and acceptability of ACT for improving the psychological health of plwMND. Methods: PlwMND aged ≥ 18 years were recruited from 10 UK MND Care Centres/Clinics. Participants received up to 8 one-to-one ACT sessions, developed specifically for plwMND, plus usual care. Co-primary feasibility and acceptability outcomes were uptake (≥ 80% of the target sample [N = 28] recruited) and initial engagement with the intervention (≥ 70% completing ≥ 2 sessions). Secondary outcomes included measures of quality of life, anxiety, depression, disease-related functioning, health status and psychological flexibility in plwMND and quality of life and burden in caregivers. Outcomes were assessed at baseline and 6 months. Results: Both a priori indicators of success were met: 29 plwMND (104%) were recruited and 76% (22/29) attended ≥ 2 sessions. Attrition at 6-months was higher than anticipated (8/29, 28%), but only two dropouts were due to lack of acceptability of the intervention. Acceptability was further supported by good satisfaction with therapy and session attendance. Data were possibly suggestive of small improvements in anxiety and psychological quality of life from baseline to 6 months in plwMND, despite a small but expected deterioration in disease-related functioning and health status. Conclusions: There was good evidence of acceptability and feasibility. Limitations included the lack of a control group and small sample size, which complicate interpretation of findings. A fully powered RCT to evaluate the clinical and cost-effectiveness of ACT for plwMND is underway

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Natural and Vaccine-Mediated Immunity to Salmonella Typhimurium is Impaired by the Helminth Nippostrongylus brasiliensis

    Get PDF
    The impact of exposure to multiple pathogens concurrently or consecutively on immune function is unclear. Here, immune responses induced by combinations of the bacterium Salmonella Typhimurium (STm) and the helminth Nippostrongylus brasiliensis (Nb), which causes a murine hookworm infection and an experimental porin protein vaccine against STm, were examined. Mice infected with both STm and Nb induced similar numbers of Th1 and Th2 lymphocytes compared with singly infected mice, as determined by flow cytometry, although lower levels of secreted Th2, but not Th1 cytokines were detected by ELISA after re-stimulation of splenocytes. Furthermore, the density of FoxP3+ T cells in the T zone of co-infected mice was lower compared to mice that only received Nb, but was greater than those that received STm. This reflected the intermediate levels of IL-10 detected from splenocytes. Co-infection compromised clearance of both pathogens, with worms still detectable in mice weeks after they were cleared in the control group. Despite altered control of bacterial and helminth colonization in co-infected mice, robust extrafollicular Th1 and Th2-reflecting immunoglobulin-switching profiles were detected, with IgG2a, IgG1 and IgE plasma cells all detected in parallel. Whilst extrafollicular antibody responses were maintained in the first weeks after co-infection, the GC response was less than that in mice infected with Nb only. Nb infection resulted in some abrogation of the longer-term development of anti-STm IgG responses. This suggested that prior Nb infection may modulate the induction of protective antibody responses to vaccination. To assess this we immunized mice with porins, which confer protection in an antibody-dependent manner, before challenging with STm. Mice that had resolved a Nb infection prior to immunization induced less anti-porin IgG and had compromised protection against infection. These findings demonstrate that co-infection can radically alter the development of protective immunity during natural infection and in response to immunization
    corecore