11 research outputs found

    Improving Strength and Stability in Continuum Robots

    Get PDF
    Continuum robots, which are bio-inspired ’trunk-like’ robots, are characterized for their inherent compliance and range of motion. One of the key challenges in continuum robotics research is developing robots with sufficient strength and stability without adding additional weight or complexity to the design. The research conducted in this dissertation encompasses design and modeling strategies that address these challenges in strength and stability. This work improves three continuum robot actuation paradigms: (1) tendon-driven continuum robots (TDCR), (2) concentric tube robots (CTR), and (3) concentric push-pull robots (CPPR). The first chapter of contribution covers strategies for improving strength in TDCRs. The payload capacity and torsional stiffness of the robot can be improved by leveraging the geometry of the backbone design and tendon routing, with design choices experimentally validated on a robot prototype. The second chapter covers a new bending actuator, concentric precurved bellows (CPB), that are based upon CTR actuation. The high torsional stiffness of bellows geometry virtually eliminates the torsional compliance instability found in CTRs. Two bellows designs are developed for 3D printing and the mechanical properties of these designs are characterized through experiments on prototypes and in static finite element analysis. A torsionally rigid kinematic model is derived and validated on 3D printed prototypes. The third chapter of contribution covers the development and validation of a mechanics-based CPPR kinematics model. CPPRs are constructed from concentrically nested, asymmetrically patterned tubes that are fixed together at their distal tips. Relative translations between the tubes induces bending shapes from the robot. The model expands the possible design space of CPPRs by enabling the modeling of external loads, non-planar bending shapes, and CPPRs with more than two tubes. The model is validated on prototypes in loaded and unloaded experiments

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    A Rigid Mechanism with Uniform, Variable Curvature

    No full text
    For minimally invasive surgery, accessing remote locations deep in the intestines, lungs, nasal cavities, and vascular system requires elongated tools that follow a nonlinear path-- a challenge for most rigid surgical tools. Some mechanism designs can withstand high-magnitude forces but are limited in their maneuverability. Others can have a wide range of motion but perform poorly while under high-magnitude force loads. The presented tendon-driven, crossed four-bar mechanism, provides both the dexterity and range of freedom needed for various hard-tissue procedures in minimally invasive surgery. The mechanism, with a set of cross bars and top and bottom bases each having the same length, can be stacked in parallel with multiple copies of itself to produce a circular arc about its vertical centerline. What makes this mechanism unique from other developed designs is that it can withstand high force loads without deformation and can produce uniform, variable curvature motion while utilizing only one degree of freedom. Using four model modules stacked together with a total length of 30 mm, the module prototype could withstand an external load of 0.2 newtons without any significant deflection while in various positions

    Comparison of 3 manual therapy techniques in individuals with low back pain who meet a clinical prediction rule

    No full text
    Study Design. Randomized clinical trial. Objective. The purpose of this randomized clinical trial was to examine the generalizability of 3 different manual therapy techniques in a patient population with low back pain that satisfy a clinical prediction rule (CPR). Summary of Background Data. Recently a CPR that identifies patients with LBP who are likely to respond rapidly and dramatically to thrust manipulation has been developed and validated. The generalizability of the CPR requires further investigation. Methods. A total of 112 patients were enrolled in the trial and provided demographic information and completed a number of self-report questionnaires including the Oswestry Disability Questionnaire (ODQ) and the Numerical Pain Rating Scale (NPRS) at baseline, 1-week, 4-weeks, and 6-months. Patients were randomly assigned to receive 1 of the 3 manual therapy techniques for 2 consecutive treatment sessions followed by exercise regimen for an additional 3 sessions. We examined the primary aim using a linear mixed model for repeated measures, using the ODQ and NPRS as dependent variables. The hypothesis of interest was the group by time interaction, which was further explored with pair-wise comparisons of the estimated marginal means. Results. There was a significant group x time interaction for the ODQ ( P \u3c 0.001) and NPRS scores ( P = 0.001). Pair-wise comparisons revealed no differences between the supine thrust manipulation and side-lying thrust manipulation at any follow-up period. Significant differences in the ODQ and NPRS existed at each follow-up between the thrust manipulation and the nonthrust manipulation groups at 1-week and 4-weeks. There was also a significant difference in ODQ scores at 6-months in favor of the thrust groups. Conclusion. The results of the study support the generalizability of the CPR to another thrust manipulation technique, but not to the nonthrust manipulation technique that was used in this study. In general, our results also provided support that the CPR can be generalized to different settings from which it was derived and validated. However, additional research is needed to examine this issue

    Whole-ecosystem warming increases plant-available nitrogen and phosphorus in an ombrotrophic bog

    Full text link
    Warming is expected to increase the net release of carbon from peatland soils, contributing to future warming. This positive feedback may be moderated by the response of peatland vegetation to rising atmospheric [CO2] or to increased soil nutrient availability. We asked whether a gradient of whole-ecosystem warming (from + 0 °C to + 9 °C) would increase plant-available nitrogen and phosphorus in an ombrotrophic bog in northern Minnesota, USA, and whether elevated [CO2] would modify the nutrient response. We tracked changes in plant-available nutrients across space and through time and in comparison with other nutrient pools, and assessed whether nutrient warming responses were captured by a point version of the land-surface model, ELM-SPRUCE. We found that warming exponentially increased plant-available ammonium and phosphate, but that nutrient dynamics were unaffected by elevated [CO2]. The warming response increased by an order of magnitude between the first and fourth year of the experimental manipulation, perhaps because of dramatic mortality of Sphagnum mosses in the surface peat of the warmest treatments. However, neither the magnitude nor the temporal dynamics of the responses were captured by ELM-SPRUCE. Relative increases in plant-available ammonium and phosphate with warming were similar, but the response varied across raised hummocks and depressed hollows and with peat depth. Plant-available nutrient dynamics were only loosely correlated with inorganic and organic porewater nutrients, likely representing different processes. Future predictions of peatland nutrient availability under climate change scenarios must account for dynamic changes in nutrient acquisition by plants and microbes, as well as microtopography and peat depth

    Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog

    No full text
    Warming is expected to increase the net release of carbon from peatland soils, contributing to future warming. This positive feedback may be moderated by the response of peatland vegetation to rising atmospheric [CO2] or to increased soil nutrient availability. We asked whether a gradient of whole-ecosystem warming (from + 0 °C to + 9 °C) would increase plant-available nitrogen and phosphorus in an ombrotrophic bog in northern Minnesota, USA, and whether elevated [CO2] would modify the nutrient response. We tracked changes in plant-available nutrients across space and through time and in comparison with other nutrient pools, and assessed whether nutrient warming responses were captured by a point version of the land-surface model, ELM-SPRUCE. We found that warming exponentially increased plant-available ammonium and phosphate, but that nutrient dynamics were unaffected by elevated [CO2]. The warming response increased by an order of magnitude between the first and fourth year of the experimental manipulation, perhaps because of dramatic mortality of Sphagnum mosses in the surface peat of the warmest treatments. However, neither the magnitude nor the temporal dynamics of the responses were captured by ELM-SPRUCE. Relative increases in plant-available ammonium and phosphate with warming were similar, but the response varied across raised hummocks and depressed hollows and with peat depth. Plant-available nutrient dynamics were only loosely correlated with inorganic and organic porewater nutrients, likely representing different processes. Future predictions of peatland nutrient availability under climate change scenarios must account for dynamic changes in nutrient acquisition by plants and microbes, as well as microtopography and peat depth

    The James Webb Space Telescope Mission

    No full text
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4 m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5 m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 yr, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit
    corecore